One of the primary goals of HgCdTe linear-mode avalanche photodiode arrays is to provide a 1kx1k pixels format, @15 μm pitch, near-infrared (0.9 to 2.5 μm) detector suitable for ultra-low background astronomical applications and long integration times. Such science goals impose very strict detector requirements, namely a dark current <0.001 [e−/pix/sec] and a sub-electron read noise. The Institute for Astronomy (IfA), University of Hawaii has partnered with Leonardo Company to develop such devices, using fine control of the photodiode process to enable noise-free amplification of the charge carriers and a readout circuit optimized for minimal glow. We discuss the first results of the tests conducted at the IfA on this new device operated in our cryogenic testbed. We report the values of dark current, read noise and conversion gain, as well as its cosmetic qualities that we have measured at a temperature of 50K. The measured dark current of these devices at low bias voltages is of ∼3 [e-/pix/ksec] (ksec=1000 seconds). We show that this dark current is dominated by the glow emitted by the ROIC of the detector when it is being read out. The intrinsic dark current of these devices is consistent with zero, with a best estimate of ∼0.1 [e-/pix/ksec]. The glow coming from the ROIC is measured to be ∼0.08 [e-/pix/frame], or 1 [e-/pix] every ∼12 frames. The read noise of these devices starts around ∼10 [e-/pix/frame] at a bias voltage of 3V, and decreases by a factor of 1.3 with each +1V increment of the bias voltage, in agreement with theory. It is reduced to ∼2 [e-/pix/frame] at a bias voltage of 8V.
The HAWAII-4RG-15 infrared detector arrays were developed by Teledyne Imaging Systems under a contract from the University of Hawaii with funding from the National Science Foundation. The development program produced three devices of near science-grade quality. This paper summarizes the characterization of these devices. The best detector, using “PV1” passivation, shows very low dark currents except for the edges of the detector, and very low levels of persistence.
The Infrared Doppler (IRD) instrument is a fiber-fed high-resolution NIR spectrometer for the Subaru telescope covering the Y,J,H-bands simultaneously with a maximum spectral resolution of 70,000. The main purpose of IRD is a search for Earth-mass planets around nearby M-dwarfs by precise radial velocity measurements, as well as a spectroscopic characterization of exoplanet atmospheres. We report the current status of the instrument, which is undergoing commissioning at the Subaru Telescope, and the first light observation successfully done in August 2017. The general description of the instrument will be given including spectrometer optics, fiber injection system, cryogenic system, scrambler, and laser frequency comb. A large strategic survey mainly focused on late-type M-dwarfs is planned to start from 2019.
The InfraRed Doppler (IRD) instrument is a high-dispersion spectrograph that is available on Subaru Telescope to explore extrasolar planets via infrared radial velocity (RV) observations. The Subaru/IRD is especially useful in the search of a low-mass planet around cool M-type dwarfs for which infrared RV observations are essential. We report our early performance tests for IRD. IRD’s two H2RG detectors have been evaluated with our detector readout technique, ensuring that their readout noise is made sufficiently smaller than the stellar photon noise expected in our planned survey. We have also tested the instrumental stability of RV measurements from the laboratory data obtained with the IRD’s calibration systems including a laser frequency comb (LFC). Among our tested three types of velocity stability, the stability of comb spectra obtained with a multi-mode fiber (MMF) relative to that with another MMF is measured to be ∼1 m s−1. We also infer from these tests that stellar RV measurements with an MMF can be calibrated with a short-term stability of 2 m s−1 or better by the simultaneously-observed reference spectra of LFC. Furthermore, we report preliminary on-sky RV measurements calibrated with a Thorium-Argon hollow-cathode lamp for RV-stable stars (τ Ceti and Barnard's star) and a planet-host (51 Pegasi). These preliminary RV measurements help the further performance test of IRD that will be performed by the on-sky observations with LFC.
We are building a next-generation laser adaptive optics system, Robo-AO-2, for the UH 2.2-m telescope that will deliver robotic, diffraction-limited observations at visible and near-infrared wavelengths in unprecedented numbers. The superior Maunakea observing site, expanded spectral range and rapid response to high-priority events represent a significant advance over the prototype. Robo-AO-2 will include a new reconfigurable natural guide star sensor for exquisite wavefront correction on bright targets and the demonstration of potentially transformative hybrid AO techniques that promise to extend the faintness limit on current and future exoplanet adaptive optics systems.
The United Kingdom Infrared Telescope (UKIRT) observatory has been transferred to the ownership of the University of Hawaii (UH) and is now being managed by UH. We have established partnerships with several organizations to utilize the UKIRT for science projects and to support its operation. Our main partners are the U.S. Naval Observatory (USNO), the East Asian Observatory (EAO), and the UKIRT microlensing team (JPL/IPAC/OSU/Vanderbilt). The USNO is working on deep northern hemisphere surveys in the H and K bands and the UKIRT microlensing team is running a monitoring campaign of the Galactic bulge. EAO, UH, and USNO have individual P.I. research programs. Most of the observations are using the Wide Field Camera (WFCAM), but the older suite of cassegrain instruments are still fully operational. Data processing and archiving continue to be done CASU and WSA in the UK. We are working on a concept to upgrade the WFCAM with new larger infrared detector arrays for substantially improved survey efficiency.
The James Webb Space Telescope near-infrared camera (JWST NIRCam) has two 2.′2×2.′2 fields of view that can be observed with either imaging or spectroscopic modes. Either of two R∼1500 grisms with orthogonal dispersion directions can be used for slitless spectroscopy over λ=2.4 to 5.0 μm in each module, and shorter wavelength observations of the same fields can be obtained simultaneously. We describe the design drivers and parameters of the grisms and present the latest predicted spectroscopic sensitivities, saturation limits, resolving powers, and wavelength coverage values. Simultaneous short wavelength (0.6 to 2.3 μm) imaging observations of the 2.4 to 5.0 μm spectroscopic field can be performed in one of several different filter bands, either infocus or defocused via weak lenses internal to the NIRCam. The grisms are available for single-object time-series spectroscopy and wide-field multiobject slitless spectroscopy modes in the first cycle of JWST observations. We present and discuss operational considerations including subarray sizes and data volume limits. Potential scientific uses of the grisms are illustrated with simulated observations of deep extragalactic fields, dark clouds, and transiting exoplanets. Information needed to plan observations using these spectroscopic modes is also provided.
Since 2007, the Ruhr-Universit¨at Bochum (RUB) in Germany and Universidad Cat´olica del Norte (UCN) in Chile jointly operate the Universit¨atssternwarte der Ruhr-Universit¨at Bochum (USB), which is located in direct neighborhood of the future E-ELT of ESO. It is the only observatory powered exclusively by solar panels and wind turbines. Excess power is stored in batteries that allow uninterrupted operation even in windless nights. The scientific equipment consists of three robotic optical telescopes with apertures ranging from 15 cm (RoBoTT) over 25 cm (BESTII) to 40 cm (BMT) and one 80 cm (IRIS) infra-red telescope. The optical telescopes are equipped with Johnson and Sloan broad band filters together with a large number of narrow and intermediate bands. In the infrared, J,H and K filters are available, accompanied by several narrow bands near the K band wavelength. The second Nasmyth focus in the 80 cm telescope feeds a high resolution echelle spectrograph similar to the FEROS instrument of ESO. This variety of instruments has evolved from different collaborations, i.e. with the University of Hawaii (IfA) in the USA, which provided the near-infrared-camera of the IRIS telescope, or with the Deutsches Zentrum f¨ur Luft- und Raumfahrt (DLR) in Germany, which provided the BESTII telescope. The highly automatized processes on all telescopes enable a single person to run the whole facility, providing the high cost efficiency required for an university observatory. The excellent site conditions allow projects that require daily observations of astronomical objects over epochs of several months or years. Here we report on such studies of young stellar objects from the Bochum Galactic Disk Survey, the multiplicity of stars, quasar variability or the hunt for exo-planets.
The Ludwig-Maximilians-Universität München operates an astrophysical observatory on the summit of Mt. Wendelstein which was equipped with a modern 2m-class robotic telescope in 20111-3. One of the two Nasmyth ports is designed to deliver the excellent (< 0.8” median) seeing of the site for a FoV of 60 arcmin2 without any corrector optics at optical and near infrared (NIR) wavebands. This port hosts a three channel imager whose design was already presented in Lang-Bardl et al. 2010.4 It is designed to efficiently support observations of targets of opportunities like Gamma-Ray-bursts or efficient photometric
redshift determination of sources identified by surveys like PanSTARS, Planck (SZ) or eROSITA. The covered wavelength range is 340 nm to 2.3 microns. The camera provides standard broadband filters (Sloan, Y, J, H, Ks) and 5 narrowband filters (OI, Hα, SII, H2, Brλ). The narrowband filters will enable deep studies of star forming regions. We present the final design of the camera, the assembly and alignment procedure performed in the laboratory before we transported the instrument to the observatory. We also show first results of the achieved on sky performance concerning image quality and efficiency of the camera in the different filter passbands.
The primary goal of the HAWAII 4RG-15 (H4RG-15) development is to provide a 16 megapixel 4096x4096 format at significantly reduced price per pixel while maintaining the superb low background performance of the HAWAII 2RG (H2RG). The H4RG-15 design incorporates several new features, notably clocked reference output and interleaved reference pixel readout, that promise to significantly improve noise performance while the reduction in pixel pitch from 18 to 15 microns should improve transimpedance gain although at the expense of some reduction in full well and possible increase in crosstalk. We report the results of very preliminary characterization of a science grade Phase 2 λc ~ 2.5 μm H4RG-15 operated in both conventional and Interleaved Reference Pixel (IRP) 32-output mode and have demonstrated that the CDS averaged read noise at 200 kHz pixel rate is comparable to, and possibly slightly below, that of the best Phase 1 H4RG-15s. We have also investigated the characteristics of pixels exhibiting RTN in the IRP frames.
KEYWORDS: James Webb Space Telescope, Spectroscopy, Near infrared spectroscopy, Imaging spectroscopy, Spectroscopes, James Webb Space Telescope, Spectroscopes, Imaging spectroscopy, Near infrared spectroscopy, Sensors, Optical filters, Stars, Image filtering, Spectral resolution
The James Webb Space Telescope near-infrared camera (JWST NIRCam) has two 2.02 x 2.02 fields of view that are capable of either imaging or spectroscopic observations. Either of two R ~ 1500 grisms with orthogonal dispersion directions can be used for slitless spectroscopy over λ = 2.4 − 5.0 μm in each module, and shorter wavelength observations of the same fields can be obtained simultaneously. We present the latest predicted grism sensitivities, saturation limits, resolving power, and wavelength coverage values based on component measurements, instrument tests, and end-to-end modeling. Short wavelength (0.6 – 2.3 μm) imaging observations of the 2.4 - 5.0 μm spectroscopic field can be performed in one of several different filter bands, either in-focus or defocused via weak lenses internal to NIRCam. Alternatively, the possibility of 1.0 – 2.0 μm spectroscopy (simultaneously with 2.4 – 5.0 μm) using dispersed Hartmann sensors (DHSs) is being explored. The grisms, weak lenses, and DHS elements were included in NIRCam primarily for wavefront sensing purposes, but all have significant science applications. Operational considerations including subarray sizes, and data volume limits are also discussed. Finally, we describe spectral simulation tools and illustrate potential scientific uses of the grisms by presenting simulated observations of deep extragalactic fields, galactic dark clouds, and transiting exoplanets.
We present the test results of science grade substrate-removed 4K×4K HgCdTe H4RG-15 NIR 1.7 μm and SWIR 2.5 μm sensor chip assemblies (SCAs). Teledyne’s 4K×4K, 15 μm pixel pitch infrared array, which was developed for the era of Extremely Large Telescopes, is first being used in new instrumentation on existing telescopes. We report the data on H4RG-15 arrays that have achieved science grade performance: very low dark current (<0.01 e-/pixel/sec), high quantum efficiency (70-90%), single CDS readout noise of 18 e-, operability >97%, total crosstalk <1.5%, well capacity >70 ke-, and power dissipation less than 4 mW. These SCAs are substrate-removed HgCdTe which simultaneously detect visible and infrared light, enabling spectrographs to use a single SCA for Visible-IR sensitivity. Larger focal plane arrays can be constructed by assembling mosaics of individual arrays.
We report the current status of the Infrared Doppler (IRD) instrument for the Subaru telescope, which aims at detecting
Earth-like planets around nearby M darwfs via the radial velocity (RV) measurements. IRD is a fiber-fed, near infrared
spectrometer which enables us to obtain high-resolution spectrum (R~70000) from 0.97 to 1.75 μm. We have been
developing new technologies to achieve 1m/s RV measurement precision, including an original laser frequency comb as
an extremely stable wavelength standard in the near infrared. To achieve ultimate thermal stability, very low thermal
expansion ceramic is used for most of the optical components including the optical bench.
In preparation for the large number of infrared pixels required in the era of Extremely Large Telescopes, Teledyne, in
partnership with the University of Hawaii and GL Scientific, has been funded to develop the next generation of largeformat infrared focal plane array for ground-based astronomy; the 4096 × 4096 pixel (15 micron pitch) H4RG-15. Teledyne has successfully designed, produced, and tested the first generation H4RG-15 prototype arrays. This paper reports on the functionality and performance test results of the H4RG-15 prototypes and provides status of the 2012 pilot production effort.
The primary goal of the HAWAII 4RG-15 (H4RG-15) development is to provide a 16 megapixel 4096x4096 format at
significantly reduced price per pixel while maintaining the superb low background performance of the HAWAII 2RG
(H2RG). The H4RG-15 design incorporates several new features, notably clocked reference output and interleaved
reference pixel readout, that promise to significantly improve noise performance while the reduction in pixel pitch from
18 to 15 microns should improve transimpedance gain although at the expense of some degradation in full well and
crosstalk. During the Phase-1 development, Teledyne has produced and screen tested six hybrid arrays. In preparation for
Phase-2, the most promising of these are being extensively characterized in the University of Hawaii’s (UH) ULBCam
test facility originally developed for the JWST H2RG program. The end-to-end performance of the most promising array
has been directly established through astronomical imaging observations at the UH 88-inch telescope on Mauna Kea. We
report the performance of these Phase-1 H4RG-15s within the context of established H2RG performance for key
parameters (primarily CDS read noise), also highlighting the improvements from the new readout modes.
M. Tamura, H. Suto, J. Nishikawa, T. Kotani, B. Sato, W. Aoki, T. Usuda, T. Kurokawa, K. Kashiwagi, S. Nishiyama, Y. Ikeda, D. Hall, K. Hodapp, J. Hashimoto, J. Morino, S. Inoue, Y. Mizuno, Y. Washizaki, Y. Tanaka, S. Suzuki, J. Kwon, T. Suenaga, D. Oh, N. Narita, E. Kokubo, Y. Hayano, H. Izumiura, E. Kambe, T. Kudo, N. Kusakabe, M. Ikoma, Ya. Hori, M. Omiya, H. Genda, A. Fukui, Y. Fujii, O. Guyon, H. Harakawa, M. Hayashi, M. Hidai, T. Hirano, M. Kuzuhara, M. Machida, T. Matsuo, T. Nagata, H. Ohnuki, M. Ogihara, S. Oshino, R. Suzuki, H. Takami, N. Takato, Y. Takahashi, C. Tachinami, H. Terada
IRD is the near-infrared high-precision radial velocity instrument for the Subaru 8.2-m telescope. It is a relatively compact (~1m size) spectrometer with a new echelle-grating and Volume-Phase Holographic gratings covering 1-2 micron wavelengths combined with an original frequency comb using optical pulse synthesizer. The spectrometer will employ a 4096x4096-pixel HgCdTe array under testing at IfA, University of Hawaii. Both the telescope/Adaptive Optics and comb beams are fed to the spectrometer via optical fibers, while the instrument is placed at the Nasmyth platform of the Subaru telescope. Expected accuracy of the Doppler-shifted velocity measurements is about 1 m s-1. Helped with the large collecting area and high image quality of the Subaru telescope, IRD can conduct systematic radial velocity surveys of nearby middle-to-late M stars aiming for down to one Earth-mass planet. Systematic observational and theoretical studies of M stars and their planets for the IRD science are also ongoing. We will report the design and preliminary development progresses of the whole and each component of IRD.
The Ludwig-Maximilians-Universit¨at M¨unchen operates an astrophysical observatory on the summit of Mt.
Wendelstein1 which will be equipped with a modern 2m-class, robotic telescope.2 One Nasmyth port of the new
Fraunhofer telescope is designed to deliver the excellent (< 0.8" median) seeing of the site [1, Fig. 1] for a smaller
FoV of 60 arcmin2 without any corrector optics at optical and NIR wavebands. Thus, it will be optimized for
fast multi-wavelength follow-up observations of targets of opportunities (e.g. Gamma-Ray-bursts) or efficient
photometric redshift determinations of huge numbers of galaxy clusters identified in optical (PanSTARRS), SZ
(Planck) or X-ray (eROSITA) surveys. We present the design of a compact 3 channel camera which serves these
science requirements, built partly from commercially available Fairchild-2k optical CCD3 cameras (Apogee),
coupled with small Bonn Shutters,4 and mounted on commercial high precision linear stages for differential
focusing. A specially designed beam-splitter system maintains the high optical quality. The NIR camera is built
in cooperation with the Institute for Astronomy in Hawaii. The combined operation of this camera with two
spectrographs at the same telescope port has already been presented at SPIE 2008.5
HiCIAO is a near-infrared, high contrast instrument which is specifically designed for searches and studies for
extrasolar planets and proto-planetary/debris disks on the Subaru 8.2 m telescope. A coronagraph technique
and three differential observing modes, i.e., a dual-beam simultaneous polarimetric differential imaging mode,
quad-beam simultaneous spectral differential imaging mode, and angular differential imaging mode, are used
to extract faint objects from the sea of speckle around bright stars. We describe the instrument performances
verified in the laboratory and during the commissioning period. Readout noise with a correlated double sampling
method is 15 e- using the Sidecar ASIC controller with the HAWAII-2RG detector array, and it is as low as 5 e-
with a multiple sampling method. Strehl ratio obtained by HiCIAO on the sky combined with the 188-actuator
adaptive optics system (AO188) is 0.4 and 0.7 in the H and K-band, respectively, with natural guide stars that
have R ~ 5 and under median seeing conditions. Image distortion is correctable to 7 milli-arcsec level using
the ACS data as a reference image. Examples of contrast performances in the observing modes are presented
from data obtained during the commissioning period. An observation for HR 8799 in the angular differential
imaging mode shows a clear detection of three known planets, demonstrating the high contrast capability of
AO188+HiCIAO.
The Infrared Imaging System (IRIS) is a 0.8m telescope and a 1024×1024 pixels camera (IRISCAM) with a HAWAII-1
detector array. IRIS is located at the Cerro Armazones Observatory in Chile that is operated by the Ruhr University
Bochum jointly with the Universidad Católica del Norte in Antofagasta. It will be used primarily to survey star-forming
regions for variability. Our goal is to discover young stellar objects undergoing accretion instabilities or rotational
modulation of star spots, eclipsing binaries, and variable reflection nebulae. The telescope and the infrared camera are
completed and first light was achieved in May of 2010. IRIS is currently being tested and characterized, before the longterm
monitoring project will commence.
The High-Contrast Coronographic Imager for Adaptive Optics (HiCIAO), is a coronographic simultaneous differential
imager for the new 188-actuator AO system at the Subaru Telescope Nasmyth focus. It is designed primarily to search
for faint companions, brown dwarves and young giant planets around nearby stars, but will also allow observations of
disks around young stars and of emission line regions near other bright central sources. HiCIAO will work in
conjunction with the new Subaru Telescope 188-actuator adaptive optics system. It is designed as a flexible,
experimental instrument that will grow from the initial, simple coronographic system into more complex, innovative
optics as these technologies become available. The main component of HiCIAO is an infrared camera optimized for
spectral simultaneous differential imaging that uses a Teledyne 2.5 μm HAWAII-2RG detector array operated by a
Sidecar ASIC. This paper reports on the assembly, testing, and "first light" observations at the Subaru Telescope.
The goal of this project is to achieve exquisite image quality over the largest possible field of view, with a goal of a
FWHM of not more than 0.3" over a square degree field in the optical domain. The narrow PSF will allow detection of
fainter sources in reasonable exposure times. The characteristics of the turbulence of Mauna Kea, a very thin ground
layer with excellent free seeing allows very wide fields to be corrected by GLAO and would make such an instrument
unique. The Ground Layer AO module uses a deformable mirror conjugated to the telescope pupil. Coupled with a high
order WFS, it corrects the turbulence common to the entire field. Over such large fields the probability of finding
sufficiently numerous and bright natural guide sources is high, but a constellation of laser beacons could be considered
to ensure homogeneous and uniform image quality.
The free atmosphere seeing then limits the image quality (50% best conditions: 0.2" to 0.4"). This can be further
improved by an OTCCD camera, which can correct local image motion on isokinetic scales from residual high altitude
tip-tilt. The advantages of the OTCCD are not limited to improving the image quality: a Panstarrs1 clone covers one
square degree with 0.1" sampling, in perfect accordance with the scientific requirements. The fast read time (6 seconds
for 1.4 Gpixels) also leads to an improvement of the dynamic range of the images. Finally, the guiding capabilities of
the OTCCD will provide the overall (local and global) tip-tilt signal.
The Infrared Imaging System (IRIS) is a 0.8 m telescope equipped with a 1024×1024 pixels near-infrared camera using
a HAWAII-1 detector array. IRIS will be located at the Cerro Armazones Observatory in Chile that is operated by the
Ruhr University Bochum jointly with the Universidad Catolica del Norte in Antofagasta. The system is specifically
designed to survey star forming regions and to search for deeply embedded variable young stars.
HiCIAO, the High-Contrast Coronographic Imager for Adaptive Optics, is a coronographic simultaneous differential imager for the Subaru Telescope Nasmyth focus. It is designed primarily to search for faint companions, brown dwarves and young giant planets, around nearby stars, but will also allow observations of disks around young stars and of emission line regions near other bright central sources. HiCIAO will work in conjunction with the new Subaru Telescope 188 actuator adaptive optics system. It is designed as a flexible, experimental instrument that will grow from the initial, simple coronographic system into more complex, innovative coronographic optics as these technologies become available. The main component of HiCIAO is an infrared camera optimized for spectral simultaneous differential imaging that uses a 2.5 μm HAWAII-2RG detector array operated by a Rockwell Sidecar ASIC.
Direct exploration of exoplanets is one of the most exciting topics in astronomy. Our current efforts in this field are concentrated on the Subaru 8.2m telescope at Mauna Kea, Hawaii. Making use of the good observing site and the excellent image quality, the infrared coronagraph CIAO (Coronagraphic Imager with Adaptive Optics) has been used for various kinds of surveys, which is the first dedicated cold coronagraph on the 8-10m class telescopes. However, its contrast is limited by the low-order adaptive optics and a limited suppression of the halo speckle noise.
HiCIAO is a new high-contrast instrument for the Subaru telescope. HiCIAO will be used in conjunction with the new adaptive optics system (188 actuators and/or its laser guide star - AO188/LGSAO188) at the Subaru infrared Nasmyth platform. It is designed as a flexible camera comprising several modules that can be configured into different modes of operation. The main modules are the AO module with its future extreme AO capability, the warm coronagraph module, and the cold infrared camera module. HiCIAO can combine coronagraphic techniques with either polarization or spectral simultaneous differential imaging modes. The basic concept of such differential imaging is to split up the image into two or more images, and then use either different planes of polarization or different spectral filter band-passes to produce a signal that distinguishes faint objects near a bright central object from scattered halo or residual speckles.
In this contribution, we will outline the HiCIAO instrument, its science, and performance simulations. The optical and mechanical details are described by Hodapp et al. (2006)1. We also present a roadmap of Japanese facilities and future plans, including ASTRO-F (AKARI), SPICA, and JTPF, for extrasolar planet explorations.
WIRCam (Wide-field InfraRed Camera) is a near-infrared (0.9-2.4 microns) camera developed for the prime focus of the Canada France Hawaii Telescope (CFHT), a 3.6-m telescope located on Mauna Kea, Hawaii. WIRCam is based on 4 x 2048x2048 HAWAII2RG arrays, developed by Rockwell. The camera provides a 0.3"/pixel sampling, and the close packaging of the detectors allows to cover an almost contiguous field-of-view of 20.5' x 20.5'. All optical elements are assembled in a cryovessel and cooled down to 85K by a He closed cycle cryogenerator. The two filter wheels have capacity for 8 filters (110 mm in diameter), cooled at low temperature together with the Lyot stop. These wheels are mounted on sapphire ball bearings and powered by external motors. Passive spring indexers define their positioning. A fused-silica tip/tilt plate powered by voice coil type motors provides image stabilization in front of the cryovessel. It compensates for flexures as well as for low frequency telescope oscillations from wind shake. This paper describes the overall architecture of the camera, giving the optical estimated performances and details some specific points of the design such as filter wheels, thermal connections, etc.
We have developed the Wide Field Grism Spectrograph 2 (WFGS2) for the f/10 focus of the University of Hawaii 2.2 m telescope (UH88). This instrument provides slit-less, wide-field spectroscopy as well as imaging and long-slit spectroscopy. Two CCD cameras of UH88, Tektronix 2k x 2k and OPTIC 4k x 4k, can be used as a detector. The spectral coverage is 380 - 970 nm, and the field of view is 11'.5 x 11'.5 with a pixel scale of 0".34 (Tektronix) or 0".21 pixel-1 (OPTIC) in the imaging mode. WFGS2 has two replica grisms (R = 620 at 650 nm and R = 730 at 400 nm) and a Volume-Phase Holographic (VPH) grism (R = 2500 at 664 nm). The VPH grism enables intermediate-dispersion spectroscopy with this transmission system. Two long-slits with widths of 0".6 and 0".9 can be used. The Sloan Digital Sky Survey (g', r', i', z') and narrow-band (wide Hα, Hα, and [SII]+Li) filters are equipped. The first light observation was done in November 2003. We present the details of WFGS2, including the results of the first light observation.
The ambitious science goals of the James Webb Space Telescope (JWST) have driven spectacular advances in λco ~ 5um detector technology over the past five years. This paper reviews both the UH/RSC team’s Phase A development and evaluation of 2Kx2K arrays exceeding the detector requirements for JWST’s near infrared instruments and also the hardware integration of these into a 4Kx4K (16Mpxl) close packed mosaic focal plane array housed in an Ultra Low Background test facility. Both individual first generation 2Kx2K SCA’s and 4Kx4K mosaic focal planes have been extensively characterized in the laboratory and, since September 2003, a NIR camera utilizing the 4Kx4K mosaic focal plane has been in use for nearly 100 nights at the UH 2.2 m telescope on Mauna Kea. Typical test results for the first generation 2Kx2K arrays and their integration into 4Kx4K mosaic focal planes are reported. Demonstration of the design concepts and both array and mosaic focal plane performance in actual hardware, as described here, has provided the foundation for design iterations leading to later generations of 2Kx2K arrays and 4Kx4K mosaic focal planes. Four major technology developments leading to first generation hardware demonstrations of both 2Kx2K SCA’s and a 4Kx4K mosaic FPA are reviewed. These are: 1) improvement in test equipment and procedures to characterize the detectors against JWST requirements and goals, primarily at 37K but with the capability to test from 30K to 100K; 2) optimization of λc ~ 5 um MBE HgCdTe material on a CZT substrate for low dark current (goal of 0.003 e-/sec at 37K) with high quantum efficiency, low cross-talk and greatly reduced image persistence; 3) development of the 2Kx2K HAWAII-2RG multiplexer designed specifically to take full advantage of these detector characteristics for a wide range of astronomical applications (and fully compatible with an ASIC controller developed under the JWST Instrument Technology Development initiative) and 4) development of molybdenum SCA carriers allowing modules to be close-butted on three sides and easily installed onto a molybdenum plate to form a 4Kx4K mosaic focal plane. We describe both the improvements in the KSPEC test facility and in test procedures for individual 2Kx2K arrays and the Ultra Low Background (ULB) test facility developed specifically to evaluate 4Kx4K mosaic focal plane assemblies required for the NIRCam instrument. The laboratory test configuration of the ULB facility utilizes multiple shields and internal light sources to achieve background fluxes <1 photon/hour per pixel for λc ~ 5um while providing temperature stability <1mK over periods of weeks. An alternate configuration utilizes fore optics to allow the mosaic FPA module of the ULB facility to be mounted at the Cassegrain focus of the UH 2.2 meter telescope, providing an image scale of 0.25”/pixel over a 17’x17’ field. A cold PK 50 lens cuts off around 1.7 um, limiting the background at wavelengths below 1.65 um (where the array can be used with normal filters and where narrow band filters reduce the background to levels comparable to NIRCam on JWST). Observations at the telescope, which provide the best way of verifying certain JWST requirements and allow direct astronomical characterization of the detectors, are reported.
Pan-STARRS, the Panoramic Survey Telescope and Rapid Response System, is a project to first develop a single wide field synoptic survey telescope (Pan-STARRS-1) followed by a system of four such telescopes. It is designed to accomplish many of the science goals envisioned by the decadal review for LSST. The primary mission of Pan-STARRS is the detection of potentially hazardous asteroids (PHA), secondary science objectives are a (nearly) all-sky survey, a medium-deep survey, an ultra-deep survey, and studies of transients and variable objects. This paper presents the current status of the telescope design, with emphasis on the optics.
Pan-STARRS, the Panoramic Survey Telescope and Rapid Response System, is a project to develop a system of four wide field synoptic telescopes. It is designed to accomplish many of the science goals envisioned by the decadal review for LSST. The primary mission of Pan-STARRS is the detection of potentially hazardous asteroids (PHA), secondary science objectives are a (nearly) all-sky survey, a medium-deep survey, an ultra-deep survey, and studies of variability. This paper discusses the basic design choice of a distributed system of four telescopes and the details of the optics design.
The Institute for Astronomy has developed and recently installed a high-resolution cross-dispersed echelle spectrograph for use at one of the coudé foci of the AEOS 3.7-meter telescope, operated by the Air Force Space Command atop Mt. Haleakala on the island of Maui. The spectrograph features an optical arm for the wavelength range 0.5 - 1.0 μm and an infrared arm for the range 1.0 - 2.5 μm. We review the spectrograph design and present commissioning results obtained with both the visible and infrared arms. Both channels use a white-pupil collimator design to maximize grating efficiency and to limit the size of the camera optics. The visible arm of the spectrograph uses deep-depletion CCDs optimized for operation near 1.0 μm. The infrared detector is a 2048 x 2048 HgCdTe array (HAWAII-2) that has been developed by the Rockwell Science Center for this project. Both channels are equipped with slit-viewing cameras for object acquisition and control of a fast guiding tip-tilt mirror located at a pupil image in the spectrograph fore optics.
The University of Hawaii Wide-Field Imager (UHWFI) is a focal compressor designed to project the full half-degree field of the UH 2.2m telescope onto the refurbished 8K×8K CCD camera. The optics use Ohara glasses and are mounted in an oil-filled cell to minimize light losses and ghost images from the large number of internal surfaces. The UHWFI is equipped with a six-position filter wheel and a rotating sector shutter, both driven by stepper motors. The instrument is currently in the design phase and will be commissioned early in 2003.
The Gemini Near-Infrared Imager (NIRI) has now been completed and is in operation at the telescope. This paper discusses the basic design of the instrument and a number of particularly interesting technical issues. NIRI offers three different pixel scales to match different operating modes of the Gemini telescope and allows polarimetric and spectroscopic observations. It is equipped with an infrared wavefront sensor to allow tip-tilt correction even in highly obscured regions.
The science program for the Next Generation Space Telescope (NGST) relies heavily on a high performance nearinfrared imager. A design which supports the observations outlined in the Design Reference Mission (DRM) and which also supports enhanced searches for "first light" objects and planets has been developed. Key features of the design include use of refractive optics to minimize the volume and mass required, tunable filters for spectroscopic imaging, and redundant imagers for fail-safe wavefront sensing.
The IFA and collaborators are embarking on a project to develop a 4-telescope synoptic survey instrument. While somewhat smaller than the 6.5m class telescope envisaged by the decadal review in their proposal for a LSST, this facility will nonetheless be able to accomplish many of the LSST science goals. In this paper we will describe the motivation for a 'distributed aperture' approach for the LSST, the current concept for Pan-STARRS -- a pilot project for the LSST proper -- and its performance goals and science reach. We will also discuss how the facility may be expanded.
Rockwell Space Center is developing low-noise visible and IR imaging sensors and systems for astronomy, high-end commercial, NASA, and advanced military applications. The first science grade 2048 by 2048 HAWAII-2 focal plane array (FPA) for astronomy was recently demonstrated for the SWIR waveband. Science-grade deliveries to the University of Hawaii's Institute for Astronomy, the European Southern Observatory and the Subaru Telescope, among others, will soon start. MWIR/visible 2048 by 2048 HAWAII-2 arrays are also being developed for the NGST program using our process for removing the CdZnTe substrate from the back-side illuminated HgCdTe FPAs to detect visible radiation in addition to IR. Previously, more than 25 science grade 2.5micrometers 1024 by 1024 HAWAII FPAs were delivered for use in many observatories; these typically exhibit < 0.1 e-/s dark current and < 10 e- read noise after correlated double sampling at temperatures above 60K. 1024 by 1024 FPAs development is also continuing; dark current < 1 e-/s has been measured at 140K for a NIR 1024 by 1024 HAWAII array. In a related effort, development of high frame rate, low noise FPAs has begun for wavefront sensing including adaptive optical systems for both visible and NIR/SWIR bands. Hybrid Visible Silicon Imager development is also continuing, expanding the success achieved with prior 640 by 480 FPAs. We are now demonstrating 1024 by 1024 arrays with 0.3-1.05 micrometers response. The silicon detectors in HyViSI FPAs are independently processed on silicon wafers and mated to the same multiplexers fabricated originally for interface to HgCdTe detectors. HyViSI FPA quantum efficiency is > 90 percent with near-100 percent fill factor, and the dark current is negligible with minimum cooling. Our near-term plan to develop 4096 by 4096 visible and IR FPAs will also be discussed.
We are developing a high-resolution cross-dispersed echelle spectrograph for installation at one of the coude foci of the new AEOS 3.67 meter telescope, operated by the Air Force Space Command on Haleakala, Maui, Hawaii. The spectrograph will consist of two major subsystems: an optical arm for the wavelength range 0.5-1.0 micrometers and an IR arm for the range 1.0-2.5 micrometers . Both arms of the spectrograph use a white- pupil collimator design to maximize grating efficiency and to limit the size of the camera optics. The optical arm of the spectrograph will use deep-depletion CCDs optimized for operation near 1.0 micrometers . The IR detector will be a 2048 by 2048 HgCdTe array that has bene developed by the Rockwell Science Center for this project. Both the optical and IR arms of the spectrograph will be equipped with slit-viewing cameras for object acquisition and control of a fast guiding tip-tilt mirror located in a pupil image in the spectrograph fore optics.
The NIRI for the Gemini North telescope is now undergoing acceptance testing. NIRI is the main near-IR facility camera on the Gemini North telescope and is designed to fully exploit the excellent characteristics of the site and the expected high performance o the telescope. NIRI offers 3 different pixel scales for wide-field, tip-tilt corrected and diffraction-limited imaging. It is equipped with a pupil imaging system to evaluate the telescope emissivity and to optimize the alignment of the instrument with the telescope. NIRI has an IR wavefront sensor so that tip-tilt and focus corrections can be obtained even in dark cloud regions or during daytime observing.
KEYWORDS: Staring arrays, Temperature metrology, Multiplexers, Astronomy, Quantum efficiency, Spectroscopy, Interference (communication), Signal to noise ratio, Data modeling, Sensors
Hg:Cd:Te grown by Molecular Beam Epitaxy onto a lattice matched Cd:Zn:Te substrate with Double Layer Planar Heterostructure architecture holds promise of extremely low, near theoretical dark current out to wavelengths beyond 5 micrometers while eliminating the persistent images and reduced short-wave quantum efficiency disadvantages of the liquid phase epitaxial (LPE) material now in widespread astronomical use. We report on the characterization of two Rockwell FPAs consisting of (lambda) c approximately 4.75 micrometers MBE material hybridized to 1K by 1K HAWAII multiplexers within the context of establishing their performance relative to the stringent focal plane goals for the Next Generation Space Telescope (NGST). The effort has concentrated primarily on characterizing total FPA noise at selected temperatures from 30 to 90 K although short wave quantum efficiency and image persistence have also been measured. The test procedures are based on the use of both DC and variance nosie techniques and, at T approximately 60K, have allowed characterization of the total noise as the sum of separate contributions due to dark current, read noise and read charge. The test facility and characterization techniques are described and results, which verify the remarkable potential of this material to exceed the NGST performance goals at temperatures both at, and also significantly higher than, the approximate 30K now anticipated for the NGST NIR focal pane, are presented.
The current state-of-the-art in large format near-IR detector array fabrication is discussed. Near-IR detector arrays of 1024 by 1024 pixels format, both in HgCdTe and InSb, are now in use in many astronomical instruments and are performing very well. The next step in detector array size has just been taken and Rockwell has produced the first science-grade 2048 by 2048 HgCdTe array. Further advances in performance are required for medium and high resolution spectroscopy and for future space missions, in particular the next generation space telescope. Technologies are being developed that will allow us to overcome most of the performance limitations of today's near-IR detector arrays.
The harsh operating environment of high vacuum and extremely low temperature poses several challenges to cryogenic mechanisms. These challenges include out-gassing, physical property change of metal and nonmetal materials, differential thermal shrinkage of different materials. Many motorized cryogenic mechanisms have been designed and fabricated for various IR instruments at the Institute for Astronomy. These mechanisms include detector focus stages, filter wheels, 2 and 3-position bema selectors, lens switchers, grating tilt stages and gimbal mirror mounts. Cryogenic motors are used for all these mechanisms. The following topics will be discussed in this paper: motor selection, material selection, stress relieve and surface treatment, ball bearing and ball screw selection and treatment, bushing materials, lubrication methods, flex pivots, and Hall effect sensors.
The world's first 2048 X 2048 HgCdTe infrared focal plane array (FPA) has been developed by Rockwell Science Center for infrared astronomy. The Hawaii-2 is the largest CMOS multiplexer designed to date, developed to interface with both infrared and visible detector arrays. The 18 micrometer pixel pitch was selected to accommodate both reasonable telescope optics and maximize yield in the fabrication of such a large readout. The fabrication uses world-class submicron photolithography to maximize yield of high quality devices. We will report on the characterization of FPAs using the Hawaii-2 multiplexer mated to SWIR detector arrays with a spectral response of 0.9 micrometer to 2.5 micrometer. These detector arrays have been processed on Liquid Phase Epitaxy (LPE) HgCdTe on sapphire substrates, also known as PACE-1. We also report on characterization of Silicon detectors in terms of their quantum efficiency, spectral response, and dark current.
Rockwell is developing the world's largest HgCdTe IR focal plane array (FPA) for astronomy and low background applications. The format of the device is a hybrid 2048 X 2048 with a unit cell size of 18 micrometers X 18 micrometers . SWIR detectors with a spectral response of 0.85 micrometers to 2.5 micrometers have been processed on liquid phase epitaxy (LPE) HgCdTe on sapphire substrates. The MWIR detectors with a spectral response of 0.4 micrometers to 5 micrometers will be processed on molecular beam epitaxy HgCdTe on CdZnTe substrates. The multiplexer has been designed and fabricated at Conexant. Room temperature probing shows that the device is functional with excellent yield. Novel hybrid fabrication techniques will be used to demonstrate the FPA. This HAWAII-2 device is based on the highly successful HAWAII 1024 X 1024 device and the performance will be similar. The ultimate performance expected from the array is: dark currents of < 0.01 3-/s, quantum efficiency of > 75 percent across the spectral band, and noise levels of < 3 e- for the SWIR and < 10 e- for the MWIR band using Fowler sampling. We expected to achieve these performance levels at 77K for the SWIR and > 40K for the MWIR band. The status of the 2048 X 2048 detector arrays and FPAs are discussed.
We discuss the main design features of the Gemini Near-IR Imager (NIRI) and its scientific capabilities. NIRI is designed to fully exploit the excellent image quality and low telescope emissivity expected from the Gemini telescope on Mauna Kea. It offers a range of pixel scales matched to different scientific objectives and has spectroscopic as well as polarimetric capabilities. One of its main design features is the use of a near-IR 2 X 2 Shack-Hartmann wavefront sensor for tip-tilt and focus control.
The Gemini Near IR Imager (NIRI) is a cryogenic instrument cooled by two closed-cycle cryo-coolers. The vacuum jacket is a hexagon shaped vacuum vessel made of three sections. Each section is forged out of aluminum 6061. All the internal structural components are made of aluminum 6061T6 except the supporting trusses, which are made of titanium. All the internal structural members are stress relieved to maintain dimensional stability and good optical alignment. The thermal insulation includes floating shields and cold shields. Two closed-cycle coolers are mounted opposite to each other and electronically synchronized in order to cancel the vibration caused by the oscillating expansion valve. Several different fabrication methods and stress relief methods are discussed.
The IR camera and spectrograph (IRCS) for SUBARU and Gemini near-IR imager (NIRI) instruments have a common design for all wheels, based on a modified geneva mechanisms with a locking cam actuated detent pin. The geneva design, in combination with the spring loaded detent mechanism, allows the stepper motor/spur gear drive to decouple from the wheel at each aperture position. The detent mechanism positions the wheel precisely. The need for precise motor control and wheel position encoding is reduced because of the detent mechanism. Six of these mechanism are filters wheels requiring repeatable aperture positing. The other seven mechanisms include of a slit wheel, grism wheel, pupil mask wheel, 2 beam steerers, a focal p;lane mask wheel, and a beamsplitter wheel. These mechanisms require repeatable, stable and accurate positioning. The number of aperture positions for the 13 wheels range from 2 to 16. The mechanisms are aligned and tested at room temperature and operated at 60 K, requiring an athermal design, for which the modified geneva mechanism is ideally suited. This paper will discuss the prototype development and final mechanical design of specific wheel mechanisms completed for the IRCS and NIRI instruments at the Institute for Astronomy.
Reviewed is a focus stage designed to accommodate the positioning and stability requirements of the detector arrays in the Gemini North Telescope's Near IR imager (NIRI). Focus axis translation of the two detector arrays is required, while sub-micron deflection stiffness about all other axes is of paramount importance to the successful operation of NIRI. The stiffness requirement coupled with a cryogenic vacuum environment led to a flexure design. Testing of the prototype stage mechanism to date has shown transverse deflections of < 1 micrometers , positioning repeatability of 1 micrometers , and satisfactory cryogenic performance.
A 1-5 micrometers IR camera and spectrograph (IRCS) is described. The IRCS will be a facility instrument for the 8.2 m Subaru Telescope at Mauna Kea. It consists of two sections, a spectrograph and a camera section. The spectrograph is a cross-dispersed echelle that will provide a resolving power of 20,000 with a slit width of 0.15 arcsec and two-pixel sampling. The camera section serves as a slit viewer and as a camera with two pixel scales, 0.022 arcsec/pixel and 0.060 arcsec/pixel. Grisms providing 400-1400 resolving power will be available. Each section will utilize an ALADDIN II 1024 X 1024 InSb array. The instrument specifications are optimized for 2.2 micrometers using the adaptive optics and the tip-tilt secondary systems of the Subaru Telescope.
We present a high-resolution gimbal mirror mechanism which will perform the beam steering for the on-instrument wavefront sensor section of the Gemini near-IR imager. In turn, the wavefront sensor will generate correction signals for the tip-tilt and fast-focus secondary mirror. Preliminary testing of the current version of the gimbal assembly has revealed positive result when operated at room temperature, but demonstrated hysterisis problems at cryogenic temperatures. Described in this paper are the specifications, design and performance characteristics, and integration of the gimbal mechanism with the rest of the wavefront sensor system.
The HAWAII-2 is an IR 20482 focal plane array (FPA) that is being developed for next-generation IR astronomy. It will supplant our HAWAII 10242 as the largest high- performance imaging array available for IR astronomy. As with our prior IR sensor, the flip-chip hybrid will consist of a low-capacitance HgCdTe detector array mated to a low- noise CMOS silicon multiplexer via indium interconnects. In order to accommodate reasonable telescope optics and fabrication of the large sophisticated readout using world- class submicron CMOS, the FPA has 18 micrometers pixel pitch. We anticipate > 5 percent yield of defect-free multiplexers using 0.8 micrometers CMOS. The HgCdTe detector arrays will be fabricated on large wafers including sapphire and silicon. Though the first FPAs will have 2.5 micrometers cut-off, the readout will be able to support longer wavelengths. Also reported are the latest 1024 X 1024 FPA results with 2.5 micrometers HgCdTe detectors.
We are developing a high-resolution cross-dispersed echelle spectrograph for installation at one of the coude foci of the new AEOS 3.67 meter telescope, operated by the Air Force Space Command on Haleakala, Maui, Hawaii. The spectrograph will consist of two major subsystems, an optical arm for the wavelength range 0.5-1.0 microns and a SWIR arm for the range 1.0-2.5 microns. The optical arm will include a mosaic 4096 by 4096 thinned CCD array, providing coverage of the wavelength range in two settings at a resolving power of 50,000. The CCD camera will be operated in frame-transfer mode. The IR arm will consist of a compact, folded cross- dispersed cryogenic echelle spectrography. The SWIR detector will be a 2048 by 2048 HgCdTe array, based on the existing HAWAII 1024 by 1024 devices. The large-format detector will permit coverage of the entire J or H band in a single grating setting with a resolving power of 60,000, and the K band in two settings. The high resolution, coupled with careful attention to scattering and stray light in the optical system, will permit exploitation of the low sky background between the strong OH airflow lines. Adequate order separation will be maintained to permit work on moderately extended objects while still retaining sky subtraction capability. The spectrography is expected to be available for use in early 2000.
We have developed 1024 X 1024 HAWAII (HgCdTe Arrays for Wide-field Astronomical Infrared Imaging) focal plane arrays (FPAs) for use in astronomical applications. These devices have been delivered to various astronomy organizations around the world and have resulted in increased sensitivities and decreased observation times for deep space imaging. The detector material is PACE-I for SWIR and Molecular Beam Epitaxy (MBE) HgCdTe on CdZnTe for MWIR. The 1024 X 1024 multiplexer has a 18.5 micrometer unit cell pitch, source follower per detector (SFD) input, and it was fabricated at or internal commercial CMOS process line with excellent yield. Mean dark currents as low as 0.02 e-/s have been measured at 77 K for 2.5 micrometer devices (1024 X 1024 format, 18.5 micrometer pitch) and 0.39 e-/s for 5.3 micrometer devices at 50 K (256 X 256 format, 40 micrometer pitch). Quantum efficiencies are greater than 50% for both SWIR and MWIR detectors; with AR coatings, these are expected to be above 75%. Noise levels of 3 e- have been measured by multiple sampling techniques for the SWIR and 75 e- for the MWIR. All of these devices are simple to operate and are readily available. We are presently developing 2048 X 2048 FPAs with 18 micrometer unit cell pitch for both SWIR and MWIR applications.
The infrared instrumentation plan for the Subaru telescope is described. Four approved infrared instruments and one test observation system are now in the construction phase. They are coronagraph imager using adaptive optics (CIAO), cooled mid- infrared camera and spectrograph (COMICS), infrared camera and spectrograph (IRCS), OH-airglow suppressor spectrograph (OHS) and mid-infrared test observation system (MIRTOS). Their performance goals and construction schedules are summarized. The plan for procurement and evaluation of infrared arrays required by these instruments is briefly described.
The Gemini Infrared Imager is a 1 - 5.5 micrometers general purpose camera to be built by the Institute for Astronomy for the Gemini Telescope on Mauna Kea, Hawaii. The camera will provide both high spatial resolution and wide field modes, and support spectroscopic, coronographic, and polarimetric capabilities. The camera project is currently in its preliminary design phase. We present the results of the conceptual design study.
The first prototype of a HgCdTe infrared detector array with 1024 X 1024 pixels developed by the Rockwell International Science Center has been tested in a new infrared camera at the UH 2.2 m telescope, the 0.6 m telescope, and the CFHT. At the 2.2 m tests were conducted both at f/31, where images of very high resolution were obtained using tip-tilt correction, and at f/10 for a wide field of view. At the CFHT both wide field imaging (f/8) and adaptive optics work was done. The HAWAII (HgCdTe astronomical wide area infrared imager) prototype device achieved very good performance. In the camera system, a double correlated readnoise of 15 e- rms was achieved. The dark current at 1 V bias could be confirmed to be below 1 e-, even though the device was operated above 77 K. The quantum efficiency is slightly below 50% and shows the wavy pattern characteristic of LPE-grown HgCdTe. The full well capacity is above 105 e- at 1 V bias, limited in our system by the dynamic range of the A/D converter. Data reduction is practically identical to what is used for NICMOS3 256 X 256 devices. Combined integration times of more than 1 hour have been used and demonstrate that the HAWAII devices are suitable for very deep imaging. The residual excess dark current problem known from NICMOS3 devices is not fully resolved. However, it appears less serious in our first HAWAII prototype device.
Rockwell Science Center and the University of Hawaii have developed a short wavelength infrared (SWIR) 1024 X 1024 focal plane array (FPA). The continuing project is funded by the U.S. Air Force Phillips Laboratory in connection with their Advanced Electro Optical System (AEOS) 3.67 m telescope project on Haleakala, Maui. We have achieved our objective of developing a 1024 X 1024 FPA with a cut-off wavelength of 2.5 micrometers . The device is named the HgCdTe Astronomical Wide Area Infrared Imager (HAWAII). The first hybrids have been characterized, delivered and first light achieved two days ahead of schedule; performance highlights include successful elimination of the reset anomaly (whose presence limited the noise performance of prior astronomical 256 X 256 FPAs), total FPA dark current < 0.1 e-/sec at 77 K, pixel yield > 99%, quantum efficiency > 50%, BLIP-limited sensitivity at low-109 photons/cm2-sec background and operating temperatures to 120 K, and read noise < 10 e-.
The optical design of a general-purpose 1 to 5 micrometers cryogenic IR camera and spectrograph (IRCS) for the 8.2-m Subaru telescope is described. The camera section serves the essential purpose of a slit-viewer in order to permit efficient use of the spectrograph on faint objects. It will also serve as a multipurpose IR camera. The spectrograph section will have a resolving power of (lambda) /(Delta) (lambda) equals 660 to 1600. 1 to 2.5 micrometers or 3 to 5 micrometers will be observed in a single exposure by using gratings and cross-dispersing prism combinations. The slit length will be 3 to 5'. The camera section will have 3 pixel scales (0'.030, 0'.056, and 0'.125) that provide high spatial imaging, 1:1 imaging (high throughput), and `wide-field' (about 2' X 2'). The spectrograph section will have 2 pixel scales: 0'.05/pixel and 0'.125/pixel. The important features of the IRCS are: (1) Two pixel scales are available, one matched to the tip-tilt secondary and the other matched to the adaptive optics system. (2) Switching between imaging and spectroscopic modes is possible. Therefore observational programs can be optimized for the seeing, availability of guide stars, and weather conditions. (3) In some cases deep imaging can be undertaken while long exposures are made in the spectroscopic mode.
The University of Hawaii and the Rockwell International Science Center are developing a large format SWIR detector array optimized for low background astronomical imaging and spectroscopic observations. This so called HgCdTe astronomical wide area IR imager (HAWAII) device will be based on the technology developed for the NICMOS project, but will incorporate several modifications of this design to improve the performance.
The MegaCam is a multi-purpose, wide-field, two-color camera being designed for use at the UH 2.2m telescope. The camera will utilize a Rockwell 1024 x 1024 HgCdTe detector array for 1-2.5 micrometers imaging, and a 2048 x 4096 frame-store CCD (2048 x 2048 active area) for optical imaging. The optics are based on a modified Offner relay design with additional lenses to give a 2:1 magnification in the infrared channel for a field of view of 5'.8 x 5'.8 (0.34 arcsec/pixel) using the f/10 telescope secondary, or a scale of 1'.9 x 1'.9 (0.15 arcsec/pixel) at f/31. This design provides a simple, high-throughput, and compact optical layout. A beamsplitter is placed in front of the IR optics at a low angle of incidence to form the optical image at 1:1 magnification on the CCD, for a field of view of 4'.7 x 4'.7 and 1'.5 x 1'.5 at f/10 and f/31, respectively. The optics and filters are to be housed in a LN2-cooled dewar. The CCD and IR arrays will be operated with modified SDSU-design controllers. The user interface will have several modes to make simultaneous optical/IR imaging simple to configure and perform at the telescope.
As part of our instrument development work for the U.S. Air Force Advanced Electron Optical System (AEOS) telescope to be built on Haleakala, Maui, the Institute for Astronomy is contracting with the Santa Barbara Research Center (SBRC) for the development of a 1024 X 1024 InSb detector array with 30 micrometers pixels optimized for groundbased astronomical applications. The device design is based on the successful 256 X 256 InSb devices currently produced by SBRC.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.