In this work simulation parameters are developed for Shipley EUV-2D photoresist under exposure at 13.4nm. Baseline parameter values are determined from theory and experiment. The simulation parameters were tuned from these values using a commercial automatic parameter optimisation software to match simulation results to experimental lithographic data generated using the ETS Set-2 projection optics in the subfield exposure station (SES). In an attempt to maximise parameter accuracy the experimental data set used included 4 different feature sizes and known non-idealities of the exposure set-up were accounted for (mask errors, lens aberrations and metrology bias). The resulting model described the experimental data very well with only a low level of residual error.
This paper describes characterization and lithographic results for one class of low absorbance fluoropolymers that were developed for use in 157 nm lithography. We discuss basic resist properties such as absorbance, hydrophobicity, thickness, resolution and profile for dense 1:1 and semi- dense 1:1.5-10 L/S features, reflection control and plasma etching resistance as a function of composition. Lithographic results were obtained on two types of substrates, silicon and SiON hardmask anti-reflectant. The results on the anti-reflectant were compared to those obtained from simulations using PROLITH. Some of the conclusions of this investigation are: Lower absorbance resists have higher hydrophobicity and better resolution; Resists with high hydrophobicity have very poor adhesion on SiOn, but have very good adhesion on Si and organic anti-reflectants; Only inorganic anti-reflectants have sufficient absorption to provide very low reflectance in <30nm thick films; 100 nm 1:1 L/S resolution is attained in 205 nm thick resist on Si at a resist absorption of 2.2/micrometers . The profile is tapered due to absorption; Adhesion to SiON has been achieved by polymer modification.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.