An ionic polymer-metal composite (IPMC) actuator is one of polymer-based soft actuators. It is produced by chemically plating gold or platinum on both surface of a perfluorosulfonic acid membrane which is known as an ion-exchange membrane. It is able to be activated by a simple driving circuit and generate a large deformation under a low applied voltage (0.5-3 V). However, individual difference and characteristics changes from environmental conditions should be considered for realizing a stable or precise control. To solve these problems, we applied a stochastic ON/OFF controller to an integrated IPMC actuator with parallel connections. The controller consists of a central controller and distributed controllers. The central controller broadcasts a control signal such as an error signal to distributed controllers uniformly. The distributed controllers switch the ON/OFF states based on the broadcasted signal stochastically. The central controller dose not measure the states of each IPMC actuator, and the control signals is calculated by using the output signal of the integrated actuator and reference signal. The validity of the applied method was investigated through numerical simulations and experiments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.