This paper describes a novel real-time algorithm for optically phasing sub-apertures of a sparse-array telescope system based on recursive estimation of the sub-aperture placement that maximizes a fringe-contrast metric. The sub-apertures are phased in pairs using broad spectral band flood-illumination of the sparse-array, while blocking reflections from all but two sub-apertures. The resulting Young’s geometry at the pupil produces an interference pattern that is characterized to determine spatial-frequency filters that are utilized to generate a contrast metric from the fringe patterns. This contrast metric is shown to generate a near-Gaussian variation as a function of optical path-length difference (OPD), with the maximum contrast occurring at zero OPD. The functional relationship between fringe contrast and sub-aperture position based on a common-path, laser-based relative-piston measurement system is developed into an estimator for maximization of fringe contrast (and therefore phasing of sub-apertures). The recursive algorithm produces real-time estimates of the zero OPD value of the relative position that improves as additional data is acquired.
This paper presents an overview of the development and capabilities of a space-traceable testbed developed for investigation of research issues related to deployable space telescopes. The Air Force Research Laboratory (AFRL) is developing the Deployable Optical Telescope (DOT), which upon completion will be a fully-deployable, sub-scale, space-traceable ground testbed for development and demonstration of critical technologies for the next-generation of space-optics systems. The paper begins with an overview of the DOT project’s technology goals, including the specific performance objectives of the various technologies that are being incorporated into the DOT testbed. The paper presents an overview of the DOT design, including the central integrating structure, deployable primary mirror petals, deployable secondary tower, deployment mechanisms, lightweight mirror segments, metrology, and control systems. The paper concludes with a report on the current status of DOT activities as well as a view of the future research that is planned for the project.
This paper presents the development of the control system architecture for vibration mitigation and autonomous phasing of sub-apertures on a sparse-array test bed. The paper begins with a brief description of the telescope system under consideration, including the actuation system providing 3 degree-of-freedom rigid body correction to each sub-aperture, and the metrology system, comprised of a white-light-based low-bandwidth absolute position sensing system and a high-bandwidth, laser-based relative position sensing system. The control problem posed by the telescope is described, including a discussion of the performance requirements the control system must meet, which include asymptotic set point tracking, broadband and tonal disturbance rejection, and tracking of non-stationary objectives. The use of system identification techniques in development of an accurate model of the input-output dynamics of the system is presented. The overall control system architecture including discussions on aspects such as tolerance of sensor dropouts, and the design of these control systems based on the identified model is presented. The paper presents the results of the application of this control system approach to the experimental system, demonstrating performance of the controlled system.
This paper presents experimental results relating to the Air Force Research Laboratory Precision Deployable Optics System (PDOS) ground demonstration. The PDOS experiment represents a sub-scale experimental test-bed for the demonstration of science and technology related to a large-aperture deployable space-based telescope systems. A description of the experimental test-bed is included. A description of microdynamic phenomena, referred to as `events' or `microlurches', observed during the test phase of the ground demonstration is presented. The performance of a three input, three output, high bandwidth structural controller operating in the presence of these events is presented and compared to the performance of the uncontrolled system.
A detailed simulation of a white light interferometer system for measuring nanometer scale structural motion is presented. Two operational methods are studied: low bandwidth, low resolution centroid tracking of the structure motion, and fine resolution, high bandwidth fringe tracking. A Michelson interferometer is modeled with one optical path containing a target mirror attached to the structure, and the second path containing a voice coil actuated reference mirror for path length difference control. Simulation results reveal a 3 nanometer RMS error for a 1 micron, 100 Hz structure motion during fringe tracking. This system is being developed at the Air Force Research Laboratory, Space Vehicles Directorate, under the UltraLITE program as part of an imaging spacecraft brassboard demonstration that requires 12 nanometer RMS absolute piston control.
KEYWORDS: Modulation, Mirrors, Actuators, Interferometers, Sensors, Signal processing, Signal detection, Control systems, Space telescopes, Light sources
A system is presented for sensing nanometer scale structural disturbances using white light interferometry in conjunction with a tracking controller. A Michelson interferometer is established using a fiber-coupled white light source, a beamsplitter cube, an actuated reference mirror, and a retroreflector attached to the structure of interest. Structural motion is determined by actively tracking the zeroth order white light interference fringe. A multimode controller architecture enables location of the white light fringe packet, coarse tracking of the packet by modulation of the actuated mirror, and fine tracking by locking onto the slope of the zeroth order fringe. Resolution and bandwidth of the measurement system is increased at each successive mode. Experimental results of the system prototype are presented. Applications include position control of optical elements in segmented aperture imaging systems such as the Next Generation Space Telescope and the USAF Research Lab UltraLITE space imager.
Spectral ellipsometric data taken on thin-film samples are often used to
obtain optical properties of the thin-film materials. A homogeneous model is
usually used for the films and a dispersive refractive index is varied to fit
the data. Often the data do not fit a homogeneous model. In this case the film
is modeled by one or more layers to approximate an inhomogeneous film. A common
procedure is to fix the dispersion curve for the film material and to model the
indices of the various layers with density or porosity as the adjustable
parameter. This paper demonstrates that dispersion and film inhomogeneity can
affect ellipsometric data in a similar fashion in certain spectral regions.
Thus, the dispersion curve derived using a homogeneous film model may be in
error due to inhomogeneities in the film. An example is presented for a silica
(SiO2) film on a silicon (Si) substrate. Ellipsometric data are calculated
using handbook values for the refractive indices of the materials, but for an
inhomogeneous silica film. These data are analyzed using a homogeneous film
with a variable Cauchy dispersion equation. The best-fit dispersion curve is
found to deviate significantly from the handbook data for silica.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.