Following the coupled motion of electrons and nuclei in molecules is difficult if one uses time-resolved approaches that only provide direct information on one or the other. We combine two complementary measurements, Time- Resolved Photoelectron/PhotoIon Spectroscopy (TRPES and TRPIS) and Ultrafast Electron Diffraction, to follow the electronic and nuclear dynamics of gas phase CH2I2 when exposed to UV light. In order to interpret the measurement, trajectory surface hopping calculations are carried out and all the measurement observables are simulated and directly compared with the measurement signals. Our measurements highlight the coupled electron-nucleus dynamics that allow for electronic potential energy to be converted into nuclear kinetic energy as well as complicated structural rearrangements of the molecule that involve symmetry breaking, dissociation, rotation, and non-local wave-packet dynamics.
We investigated the ultrafast photochemical ring-opening in the molecule α-phellandrene by a combination of megaelecronvolt ultrafast electron diffraction and excited state ab initio multiple spawning wavepacket simulations. α- Phellandrene exhibits a number of different conformers which produce different ring-opening photoproducts according to the Woodward-Hoffmann rules. In our study we image the conversion of a specific conformer of α-phellandrene in the Woodward-Hoffmann predicted photoproduct in real time and space.
Thomas Wolf, Jie Yang, David Sanchez, João P. Nunes, Robert Parrish, Xiaozhe Shen, Martin Centurion, Ryan Coffee, James Cryan, Markus Gühr, Kareem Hegazy, Adam Kirrander, Renkai Li, Jennifer Ruddock, Theodore Vecchione, Stephen Weathersby, Peter Weber, Kyle Wilkin, Haiwang Yong, Quiang Zheng, Todd Martinez, Xijie Wang, Michael Minitti
The photoinduced ring opening of 1,3-cyclohexadiene is a prototypical photo-allowed, ultrafast reaction in agreement with the Woodward-Hoffmann rules. Furthermore, it is a model reaction for the biosynthesis of vitamin D. The reaction mechanism involves coupled dynamics of the electrons and nuclei of the molecule in the vicinity of a conical intersection between the excited state and the ground state. It has been intensively investigated by spectroscopic methods, which were primarily sensitive to transient changes in the electronic structure during internal conversion through a conical intersection between the excited state and the ground state. The corresponding structural dynamics have so far only been investigated by a ultrafast x-ray diffraction study. However, spatial resolution down to bond lengths has not been achieved so far. We have investigated the ring opening by gas phase MeV ultrafast electron diffraction with an unprecedented combination of femtosecond temporal and sub Angstrom spatial resolution. The obtained momentum transfer range allows us to follow transient bond length changes by real space transformation of the experimental dataset. Thus, the experimentally observed structural dynamics can be directly compared to quantum molecular dynamics simulations. We, furthermore, can follow the further structural relaxation of the molecule for several hundred femtoseconds beyond relaxation through the conical intersection with the ground state.
Martin Centurion, Jie Yang, Markus Guehr, Xiaozhe Shen, Renkai Li, Omid Zandi, Kyle Wilkin, Theodore Vecchione, Ryan Coffee, Jeff Corbett, Alan Fry, Nick Hartmann, Carsten Hast, Kareem Hegazy, Keith Jobe, Igor Makasyuk, Joseph Robinson, Matthew Robinson, Sharon Vetter, Stephen Weathersby, Chales Yoneda, Xijie Wang
Ultrafast electron diffraction (UED) has the potential to capture changes in the structure of isolated molecules on the natural spatial and temporal scale of chemical reactions, that is, sub-Angstrom changes in the atomic positions that happen on femtosecond time scales. UED has the advantage that electron sources can easily reach sub-Angstrom spatial resolution, but so far femtosecond resolution had not been available for gas phase experiments due to the challenges in delivering short enough electron pulses on a gas target and the velocity mismatch between laser and electron pulses. Recently, we have used relativistic electron pulses at MeV energy to solve these challenges and reach femtosecond resolution. We have, for the first time, imaged coherent nuclear motion in a molecule with UED. In a proof-of-principle experiment, we captured the motion of a laser-excited vibrational wavepacket in iodine molecules. We are currently performing experiments in more complex molecules to capture laser-induced dissociation and conformational changes. We have also developed a table top 100 keV source that relies on a pulse compressor to deliver femtosecond electron pulses on a target and uses a tilted laser pulse to compensate for the velocity mismatch between the laser and the electrons. This source has a high repetition rate that will complement the high temporal resolution of the relativistic source.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.