Compton radiography is an important diagnostic tool for Inertial Confinement Fusion (ICF), which provides important parameters about integrity, symmetry and ρR areal density of the dense cold fuel surrounding the hot spot. The dual MCPs (Micro-Channel Plate) configuration detector as a key component for Compton radiography has the ability to detect hard x-rays at energies from 40 to 200 keV with higher Detective Quantum Efficiency (DQE). In this work, a set of simulation methods for calculating the DQE and spatial resolution of dual MCPs are proposed. The photoelectric conversion and secondary electron multiplication processes of 59 KeV X-rays in double MCPs were simulated. The first piece of MCP with 51% lead content absorb x-rays volumetrically to improve the DQE and the second piece of MCP provides a large gain to multiply the secondary electrons. The simulation results indicate that the spatial resolution of the dual MCP detector is 186 μm, and the DQE can reach 6.2%, which will ensure the dual MCP-based framing cameras can obtain imploded capsule images with higher signal-to-noise ratio and spatial resolution. The influence of MCP parameters on DQE and spatial resolution was analyzed, and the simulation method will provide an important reference for further optimization of the detector.
The ultrafast all-optical solid-state framing camera(UASFC) technique is a new diagnostic method based on the semiconductor photorefractive effect. The ultra-fast response characteristics of this method are mainly determined by the response time of the semiconductor material's photorefractive index change. How to quickly and accurately measure the photorefractive index response time of semiconductor materials is an important step in the development of all-optical solid ultra-fast diagnostic chip. In this paper, the 100fs pulsed laser is divided into two beams. One of which is used as excitation light to generate pulsed X-ray source; the other beam is measured as a spectral probe light. Through the test of GaAs material, the response time of the refractive index change of GaAs material was less than 5ps, which laid a foundation for further optimization experiment and accurate measurement.
Thermal stability of Atomic Layer Deposition Al2O3 film on HgCdTe was investigated by Al2O3 film post-deposition annealing treatment and Metal-Insulator-Semiconductor device low-temperature baking treatment. The effectiveness of Al2O3 film was evaluated by measuring the minority carrier lifetime and capacitance versus voltage characteristics. After annealing treatment, the minority carrier lifetime of the HgCdTe sample presented a slight decrease. Furthermore, the fixed charge density and the slow charge density decreased significantly in the annealed MIS device. After baking treatment, the fixed charge density and the slow charge density of the unannealed and annealed MIS devices decreased and increased, respectively.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.