Semiconductor emitters are used in many areas of medicine, allowing for new methods of diagnosis, treatment and effective prevention of many diseases. The article presents selected areas of application of semiconductor sources in UVVIS- NIR range, where in recent years competition in semiconductor lasers and LEDs applications has been observed. Examples of applications of analyzed sources are indicated for LLLT, PDT and optical diagnostics using the procedure of color contrast. Selected results of LLLT research of the authors are presented that were obtained by means of the developed optoelectronic system for objectified irradiation and studies on the impact of low-energy laser and LED on lines of endothelial cells of umbilical vein. Usefulness of the spectrally tunable LED lighting system for diagnostic purposes is also demonstrated, also as an illuminator for surface applications - in procedure of variable color contrast of the illuminated object.
In the paper is presented optoelectronic diagnostic set for standardization the biostimulation procedures performed on cell lines. The basic functional components of the therapeutic set are two digitally controlled illuminators. They are composed of the sets of semiconductor emitters – medium power laser diodes and high power LEDs emitting radiation in wide spectral range from 600 nm to 1000 nm. Emitters are coupled with applicator by fibre optic and optical systems that provides uniform irradiation of vessel with cell culture samples. Integrated spectrometer and optical power meter allow to control the energy and spectral parameters of electromagnetic radiation during the Low Level Light Therapy procedure. Dedicated power supplies and digital controlling system allow independent power of each emitter . It was developed active temperature stabilization system to thermal adjust spectral line of emitted radiation to more efficient association with absorption spectra of biological acceptors. Using the set to controlled irradiation and allowing to measure absorption spectrum of biological medium it is possible to carry out objective assessment the impact of the exposure parameters on the state cells subjected to Low Level Light Therapy. That procedure allows comparing the biological response of cell lines after irradiation with radiation of variable spectral and energetic parameters. Researches were carried out on vascular endothelial cell lines. Cells proliferations after irradiation of LEDs: 645 nm, 680 nm, 740 nm, 780 nm, 830 nm, 870 nm, 890 nm, 970 nm and lasers 650 nm and 830 nm were examined.
In this article authors present the developed optoelectronic set for controlled, repeatable exposure by electromagnetic radiation of biological structures in the spectral band of tissue transmission window 600-1000 nm. The set allows for an objective selection and control of exposure parameters and comparison of results for variable energetic, spectral and polarization parameters of radiation beam. Possibility of objective diagnostics of tissue state during laser treatment was provided in the presented optoelectronic set.
Background: The main purpose of this study was to analyze the influence of power intensity and wavelength of Low Level Laser Therapy (LLLT) and HILT (High Intensity Laser Therapy) on endothelial cell proliferation.
Material and methods: The tests were done on human umbilical vein endothelial cells (HUVEC). Cultures were exposed to laser irradiation of 660 nm and 670 nm at different dosages, power output was 10 – 40 mW as well as 820 nm with power 100 mW and 808 nm with power 1500 mW. Energy density was from 0.28 to 11,43 J/cm2. Cell proliferation of a control and tested culture was evaluated with a colorimetric device to detect live cells. The tests were repeated 8 times.
Results: We observed good effects of LLLT on live isolated ECs and no effects in experiments on previous deep-frozen cultures. Also HILT stimulated the proliferation of HUVEC.
Conclusion: Endothelial cells play a key role in vascular homeostasis in humans. We observed the stimulatory effect of LLLT and HILT on proliferation of HUVEC. Many factors influence the proliferation of EC, so is it necessary to continue the experiment with different doses, intensity and cell concentration.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.