A novel miniaturized near-infrared spectrometer readily mountable to wearable devices for continuous monitoring of individual’s key bio-markers was proposed. Spectrum is measured by sequential illuminations with LED’s, having independent spectrum profiles and a continuous detection of light radiations from the skin tissue with a single cell PD. Based on Tikhonov regularization with singular value decomposition, a spectrum resolution less than 10nm was reconstructed based on experimentally measured LED profiles. A prototype covering first overtone band (1500-1800nm) where bio-markers have pronounced absorption peaks was fabricated and verified of its performance. Reconstructed spectrum shows that the novel concept of miniaturized spectrometer is valid.
An arrayed beam steering device enables much simplified system architectures for high quality multiview 3D displays by adapting time multiplexing and eye tracking scheme. An array device consisting of microscale liquid prisms is presented, where the prism surface between two immiscible liquids is electrically controlled to steer light beams by the principle of electrowetting. An array prototype with 280×280μm pixels was fabricated and demonstrated of its full optical performances. The maximum tilting angle of each prism was measured to be 22.5° in average, with a tracking resolution of less than 0.04°. In this paper, we report a design and fabrication of eletrowetting based prism array, opto-fluidic simulations, optical characterizations, as well as applications to achieve low fatigue 3D displays.
Recently liquid-based optical devices are emerging as attractive components in three-dimensional (3D) display for its
compact structure and fast response time. Among them an electrowetting prism array is one of the promising 3D devices.
It steers a beam, which enables to provide corresponding perspectives to observer. For high quality autostereoscopic 3D
displays the important factors are the beam steering angle and the beam profile, the optical characteristics. In this paper,
we propose a method to measure the optical characteristics of the liquid prism and show experimental results on our
prototype electrowetting prism array, which consists of prisms with 200um by 200um size. A modified 4-f system is
adopted for the proposed method. It provides two kinds of information of the optical characteristics of the liquid prism at
the image plane and at the Fourier plane. First, the proposed measurement setup magnifies the image of the liquid micro
prism array so that we can observe the status of the each prism array directly with bare eye and align a mask easily for
selecting a prism to be examined at the image plane. Secondly, the steering angle can be calculated by measuring the
displacement of the beam at the Fourier plane, where the angular profiles that have important information on the oilwater
interface is observed precisely. The principle of the proposed method will be explained, and the measured optical
characteristics from experimental results on the liquid prism we fabricated will be provided, which proves the validity of
the measurement method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.