InGaN-based blue light-emitting diodes (LEDs), with their high efficiency and brightness, are entering the display industry. However, a significant gap remains between the expectation of highly efficient light sources and their experimental realization into tiny pixels for ultrahigh-density displays for augmented reality (AR). Her, we report using tailored ion implantation (TIIP) to fabricate highly-efficient, electrically-driven pixelated InGaN microLEDs (μLEDs) at the mid-submicron scale (line/space of 0.5/0.5 μm. Moreover, we demonstrate high-density TFT and QD C/F integration technologies.
We report on electrically-driven diffraction grating, where refractive index of a liquid crystal (LC) was modulated periodically at an interval of 700 nm by applying an external DC bias to a metallic nanograting (NG). The LC-NG structure exhibited a maximum refractive index variation (Δn) of 0.088 and a diffraction efficiency (η) change of 0-16% with a large diffraction angle of 64° for incident light of 633 nm wavelength. This approach, with the help of faster electronics, provides an opportunity of developing active holograms for real 3D display
We report the enhanced electroluminescence (EL) of GaN light-emitting diodes (LEDs) on glass substrates. We found that GaN morphology affected the EL and achieved enhanced EL of GaN-LEDs on glass by identifying the optimal GaN morphology having both high crystallinity and compatibility for device fabrication. At proper growth temperature, GaN crystallinity was improved with increasing GaN crystal size irrespective of the GaN crystallographic orientation, as determined by spatially resolved cathodoluminescent spectroscopy. The optimized GaN LEDs on glass composed of the nearly single-crystalline GaN pyramid arrays exhibited excellent microscopic EL uniformity and luminance values of ~ 9100 cd/m2 at the peak wavelength of 495 nm. The EL color could be adjusted mainly by varying the quantum well temperature. In addition, new growth methods for achieving high GaN crystallinity at a low growth temperature (e.g. ~700°C) were briefly reviewed and attempted by adopting selective heating. We expect that performance of the GaN LEDs on glass can be much enhanced by enhancing GaN crystallinity and p-GaN coating, and evolvement of low-temperature growth of high-quality GaN might even customize ordinary glass as a substrate, which enables high-performance, low-cost lighting or display.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.