Ice accretion on cables of bridge structures poses serious risk to the structure as well as to vehicular traffic when the ice falls onto the road. Detection of ice formation, quantification of the amount of ice accumulated, and prediction of icefalls will increase the safety and serviceability of the structure. In this paper, an ice accretion detection algorithm is presented based on the Continuous Wavelet Transform (CWT). In the proposed algorithm, the acceleration signals obtained from bridge cables are transformed using wavelet method. The damage sensitive features (DSFs) are defined as a function of the wavelet energy at specific wavelet scales. It is found that as ice accretes on the cables, the mass of cable increases, thus changing the wavelet energies. Hence, the DSFs can be used to track the change of cables mass. To validate the proposed algorithm, we use the data collected from a laboratory experiment conducted at the Technical University of Denmark (DTU). In this experiment, a cable was placed in a wind tunnel as ice volume grew progressively. Several accelerometers were installed at various locations along the testing cable to collect vibration signals.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.