Many photovoltaic (PV) technologies have been found to be sensitive to moisture that diffuses into a PV package. Even with the use of impermeable frontsheets and backsheets, moisture can penetrate from the edges of a module. To limit this moisture ingress pathway from occurring, manufacturers often use a low permeability polyisobutylene (PIB) based edge seal filled with desiccant to further restrict moisture ingress. Moisture ingress studies have shown that these materials are capable of blocking moisture for the 25-year life of a module; but to do so, they must remain well-adhered and free of cracks. This work focuses on adapting the Boeing Wedge test for use with edge seals laminated using glass substrates as part of a strategy to assess the long-term durability of edge seals. The advantage of this method is that it duplicates the residual stresses and strains that a glass/glass module may have when the lamination process results in some residual glass bending that puts the perimeter in tension. Additionally, this method allows one to simultaneously expose the material to thermal stress, humidity, mechanical stress, and ultraviolet radiation. The disadvantage of this method generally is that we are limited by the fracture toughness of the glass substrates that the edge seal is adhered to. However, the low toughness of typical uncrosslinked or sparsely crosslinked PIB makes them suitable for this technique. We present data obtained during the development of the wedge test for use with PV edge seal materials. This includes development of the measuring techniques and evaluation of the test method with relevant materials. We find consistent data within a given experiment, along with the theoretical independence of fracture toughness measurements with wedge thickness. This indicates that the test methodology is reproducible. However, even though individual experimental sets are consistent, the reproducibility between experimental sets is poor. We believe this may be due to inconsistencies in sample history, sample batch, or small changes in sample preparation/assembly from one month to the next. Because the fracture strength of typical edge seal materials is so low, they cannot be relied upon for mechanical strength. A small stress or strain on the edge seal is capable of promoting delamination or tearing causing the edge seal to fail. Because of this, edge seals are very dependent on the processing and construction parameters in the full size PV module such that any long term evaluation of their durability must be conducted on full size modules to be accurate.
Peter Hacke, Kent Terwilliger, Stephen Glick, Greg Perrin, John Wohlgemuth, Sarah Kurtz, Keith Showalter, John Sherwin, Eric Schneller, Stephen Barkaszi, Ryan Smith
Two CdTe and two copper indium gallium (di)selenide (CIGS)-type modules were tested for potential-induced degradation (PID) with positive and negative 1000 V biases applied to the active cell circuit in an 85°C, 85% relative humidity environmental chamber. Various degradation mechanisms could be seen with signatures such as shunting, transparent conductive oxide (TCO) corrosion, charge carrier lifetime reduction, and dead active layer at edges along with resulting cell mismatch. All modules tested exhibited degradation by system voltage stress in chamber, but only one module type has degraded in parallel field tests. I−V curve data indicated that one CdTe-type module sequentially exhibited shunting followed by a recovery and then series resistance losses. This module type showed TCO delamination from the glass in the environmental chamber tests and also exhibited power degradation within 5 weeks in field tests. Relative rates of Coulomb transfer from the voltage-biased active cell circuit to ground are compared for the modules in chamber tests to those placed outdoors under system voltage stress to extrapolate the anticipated time to failure in the field. This analysis correctly indicated which module type failed in the field first.
Photovoltaic (PV) modules, operate at high voltages and elevated temperatures, and are known to degrade because of leakage current to ground. Related degradation processes may include: electric/ionic corrosion, electrochemical deposition, electromigration, and/or charge build-up in thin layers. The use of polymeric materials with a high resistivity is known to reduce the rate of potential induced degradation processes. Because of this, PV materials suppliers are placing increased importance on the encapsulant bulk resistivity, but there is no universally accepted method for making this measurement. The development of a resistivity test standard is described in this paper. We have performed a number of exploratory and round-robin tests to establish a representative and reproducible method for determining the bulk resistivity of polymeric materials, including encapsulation, backsheet, edge seals, and adhesives. The duration of measurement has been shown to greatly affect the results, e.g., an increase as great as 100X was seen for different measurement times. The standard has been developed using measurements alternating between an "on" and "off" voltage state with a weighted averaging function and cycle times of an hour.
In this work, the use of manufacturing metrology across the supply chain to improve crystalline silicon (c-Si) photovoltaic (PV) module reliability and durability is addressed. Additionally, an overview and summary of a recent extensive literature survey of relevant measurement techniques aimed at reducing or eliminating the probability of field failures is presented. An assessment of potential gaps is also given, wherein the PV community could benefit from new research and demonstration efforts. This review is divided into three primary areas representing different parts of the c-Si PV supply chain: (1) feedstock production, crystallization and wafering; (2) cell manufacturing; and (3) module manufacturing.
The paper provides latest update on the activities performed by the group #4-diodes, shading and reverse bias of the PV Module Quality Assurance Task Force (PVQAT) in the areas such as electrostatic discharge testing and standards, thermal runaway testing, diode junction temperature measurement techniques, thermal endurance tests and analysis of field failures. Philosophy, motivation and future direction for the group #4 is also discussed.
The International PV Quality Assurance Task Force is developing a rating system that provides comparative information about the relative durability of PV modules. Development of accelerated stress tests that can provide such comparative information is seen as a major step toward being able to predict PV module service life. This paper will provide details of the ongoing effort to determine the format of such an overall module rating system. The latest proposal is based on using three distinct climate zones as defined in IEC 60721-2-1 for two different mounting systems. Specific stresses beyond those used in the qualification tests are being developed for each of the selected climate zones.
The optical transmittance of encapsulation materials is a key characteristic for their use in photovoltaic (PV) modules. Changes in transmittance with time in the field affect module performance, which may impact product warranties. Transmittance is important in product development, module manufacturing, and field power production (both immediate and long-term). Therefore, an international standard (IEC 62788-1-4) has recently been proposed by the Encapsulation Task-Group within the Working Group 2 (WG2) of the International Electrotechnical Commission (IEC) Technical Committee 82 (TC82) for the quantification of the optical performance of PV encapsulation materials. Existing standards, such as ASTM E903, are general and more appropriately applied to concentrated solar power than to PV. Starting from the optical transmittance measurement, the solar-weighted transmittance of photon irradiance, yellowness index (which may be used in aging studies to assess durability), and ultraviolet (UV) cut-off wavelength may all be determined using the proposed standard. The details of the proposed test are described. The results of a round-robin experiment (for five materials) conducted at seven laboratories to validate the test procedure using representative materials are also presented. For example, the Encapsulation Group actively explored the measurement requirements (wavelength range and resolution), the requirements for the spectrophotometer (including the integrating sphere and instrument accessories, such as a depolarizer), specimen requirements (choice of glass-superstrate and -substrate), and data analysis (relative to the light that may be used in the PV application). The round-robin experiment identified both intra- and inter-laboratory instrument precision and bias for five encapsulation materials (encompassing a range of transmittance and haze-formation characteristics).
The International PV Module Quality Assurance Task Force was created in 2011 to develop a rating system that provides comparative information about the relative durability of PV modules. The identification of accelerated stress tests that can provide such comparative information is seen as a major step toward being able to predict PV module service life. This paper will describe the methodology being employed by the Task Force as well as the efforts of the Ten Task Groups formed by the Task Force. Since this is an ongoing effort, this paper will serve as a progress report.
The field of photovoltaics has undergone dramatic growth over the past few years. This growth has been accompanied by two significant changes in the commercial photovoltaic (PV) market.
1.The major PV market has shifted from the residential and commercial building markets to central station utility power markets. With this switch has come a new focus on the long-term reliability and durability of PV modules and systems. If you are installing tens or even hundreds of megawatts of PV modules, it is absolutely necessary to ensure that they will continue to perform adequately throughout their expected lifetime of at least 25 years.
2.Selling prices for PV modules have decreased from more than $4 per watt to less than $1 per watt in the last 5 years. This reduction in selling process has been driven by low-cost production in the developing world. This means that most of today's PV modules are being manufactured by companies that did not exist 10 or, in many cases, even 5 years ago. Yet the modules must carry 25-year warranties and are expected to survive at least that long without having the benefit of long-term field experience.
Engineering robust adhesion of the junction-box (j-box) is a hurdle typically encountered by photovoltaic (PV) module manufacturers during product development. There are historical incidences of adverse effects (e.g., fires) caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the “damp heat” IEC qualification test is proposed to verify the basic robustness of its adhesion system. The details of the proposed test will be described, in addition to the preliminary results obtained using representative materials and components. The described discovery experiments examine moisture-cured silicone, foam tape, and hot-melt adhesives used in conjunction with PET or glass module “substrates.” To be able to interpret the results, a set of material-level characterizations was performed, including thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. PV j-boxes were adhered to a substrate, loaded with a prescribed weight, and then placed inside an environmental chamber (at 85°C, 85% relative humidity). Some systems did not remain attached through the discovery experiments. Observed failure modes include delamination (at the j-box/adhesive or adhesive/substrate interface) and phase change/creep. The results are discussed in the context of the application requirements, in addition to the plan for the formal experiment supporting the proposed modification to the qualification test.
We examine a proposed test standard that can be used to evaluate the maximum representative change in linear dimensions of sheet encapsulation products for photovoltaic modules (resulting from their thermal processing). The proposed protocol is part of a series of material-level tests being developed within Working Group 2 of the Technical Committee 82 of the International Electrotechnical Commission. The characterization tests are being developed to aid module design (by identifying the essential characteristics that should be communicated on a datasheet), quality control (via internal material acceptance and process control), and failure analysis. Discovery and interlaboratory experiments were used to select particular parameters for the size-change test. The choice of a sand substrate and aluminum carrier is explored relative to other options. The temperature uniformity of ±5°C for the substrate was confirmed using thermography. Considerations related to the heating device (hot-plate or oven) are explored. The time duration of 5 minutes was identified from the time-series photographic characterization of material specimens (EVA, ionomer, PVB, TPO, and TPU). The test procedure was revised to account for observed effects of size and edges. The interlaboratory study identified typical size-change characteristics, and also verified the absolute reproducibility of ±5% between laboratories.
The initial qualification standards for photovoltaic modules were designed to help develop a product that is safe, and able
to survive reasonably long time periods when deployed in the field. To accomplish this, TC-82 of the International
Electro-Technical Commission (IEC), developed and published module qualification standards (IEC 61215 for
crystalline Si, IEC 61646 for thin films and IEC 62108 for concentrating modules) and a module safety standard (IEC
61730 -1 and 2). As PV has developed and the technology has become better understood, the properties of materials used
in the module package play an increasingly important part in achieving long-term durability and safety. Certain basic
properties are required of the materials in order for the modules to be safe and to be able to survive in the field for 25
years or more.
Therefore Working Group 2 (Modules) of TC-82 began work to develop new material-level standards for PV that will
utilize existing standards, whenever available, but tailored for characterizing the properties that are important for PV
modules and modified to take into account the environmental conditions specific to PV applications. The goal is to
provide a uniform approach to characterizing candidate materials, providing the necessary information to designers
selecting materials for use in their PV products as well as to certification bodies assessing the quality and safety of the
products made from these materials. This paper will describe the details of the effort underway to determine what PV
material standards are necessary and the progress on developing those standards.
To ensure the longevity and reliability of solar modules, the PV industry has adopted a series of accelerated aging tests.
Among these, the damp heat test performed at 85°C, 85% relative humidity for 1000 hrs provides the most information
on the degradation of encapsulant and backsheet materials. The purpose of this work is to define the proper accelerated
test conditions that represent 25 years of real field life exposure of these polymers.
The reliability of PV modules and systems is critical to the commercial success of Photovoltaics. Financial payback
requires PV systems to reliably produce the promised electricity over the warranted time period. This paper will review
the present status of PV system reliability using outdoor data from fielded arrays and results from accelerated testing of
components.
SC910: Design and Reliability of Photovoltaic Modules
Photovoltaic module design draws on knowledge from many disciplines: optical, electronic, mechanical and quality engineering. This course provides attendees with a basic working knowledge of photovoltaic (PV) module design and reliability. A brief summary of the Physics of Failure of Electronic Packages will be presented. The history of PV module field failures will be presented along with a description of how this field experience has been utilized to develop more reliable modules and accelerated stress tests to more rapidly evaluate module performance. The concept of qualification testing will be introduced with a discussion on its usefulness and limitations. Typical module configurations will be presented along with a discussion of the criteria utilized for component selection within these configurations. A number of examples based on commercial module construction will be used to illustrate these points. The long term reliability, degradation rates and lifetime for the present day commercial modules will be discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.