The infrared sensors group at the Pacific Northwest National Laboratory (PNNL) is focused on the science and technology of remote and in-situ chemical sensors for detecting proliferation and countering terrorism. To support these vital missions, PNNL is developing frequency-modulation techniques for remote probing over long optical paths by means of differential-absorption light detecting and ranging (LIDAR). This technique can easily monitor large areas, or volumes, that could only be accomplished with a large network of point sensors. Recently, PNNL began development of a rugged frequency-modulation differential-abosrption LIDAR (FM-DIAL) system to conduct field experiments. To provide environmentla protection for the system and facilitate field deployments and operations, a large, well insulated, temperature controlled trailer was specified and acquired. The trailer was outfitted with a shock-mounted optical bench, an electronics rack, a liquid nitrogen Dewar, and a power generator. A computer-controlled gimbal-mounted mirror was added to allow the telescope beam to be accurately pointed in both the vertical and horizontal plane. This turned out to be the most complicated addition, and is described in detail. This paper provides an overview of the FM-DIAL system and illustrates innovative solutions developed to overcome several alignment and stability issues encountered in the field.
Chalcogenide glasses are formed by combining chalcogen elements with IV-V elements. Among the family of glasses, As2S3, and As2Se3 are important infrared (IR) transparent materials for a variety of applications such as IR sensors, waveguides, and photonic crystals. With the promise of accessibility to any wavelengths between 3.5 and 16 μm using tunable quantum cascade lasers (QCL) and chalcogenides with IR properties that can be compositionally adjusted, ultra-sensitive, solid-state, photonic-based chemical sensing in mid-wave IR region is now possible. Pacific Northwest National Laboratory (PNNL) has been developing quantum cascade lasers (QCLs), chalcogenides, and all other components for an integrated approach to chemical sensing. Significant progress has been made in glass formation and fabrication of different structures at PNNL. Three different glass-forming systems, As-S, As-S-Se, and As-S-Ag have been examined for this application. Purification of constituents from contaminants and thermal history are two major issues in obtaining defect-free glasses. We have shown how the optical properties can be systematically modified by changing the chemistry in As-S-Se system. Different fabrication techniques need to be employed for different geometries and structures. We have successfully fabricated periodic arrays and straight waveguides using laser-writing and characterized the structures. Wet-chemical lithography has been extended to chalcogenides and challenges identified. We have also demonstrated holographic recording or diffraction gratings in chalcogenides.
We consider the application of mid-infrared (MIR) wavelength quantum cascade lasers (QCL) as sources for free-space optical communications. QCL’s possess high modulation bandwidth and excellent optical performance in the atmospherically transparent MIR spectral range. In order to investigate this potential application area, we have performed a series of comparative evaluations on analog and digital free-space optical links operating in the near-infrared (NIR) (830nm, 1300nm and 1550nm) and mid-infrared (8μm). The measurements were made using well controlled atmospheric conditions in the 65ft long Pacific Northwest National Laboratory’s Aerosol Wind Tunnel Research Facility using water vapor, oil vapor and dust as the scattering media. We measured the transmitted intensity as a function of the density of scatterers in the tunnel. We also performed bit error rate analysis of signals transmitted at the DS-3 data rate. The QCL link consistently showed a higher performance level when compared to the NIR links for water fog, oil fog and dust scattering.
Chemical detection using infrared hyperspectral imaging systems often is limited by the effects of variability of the scene background emissivity spectra and temperature. Additionally, the atmospheric up-welling and down-welling radiance and transmittance are difficult to estimate from the hyperspectral image data, and may vary across the image. In combination, these background variability effects are referred to as "clutter." A study has been undertaken at Pacific Northwest National Laboratory to determine the relative impact of atmospheric variability and background variability on the detection of trace chemical vapors. This study has analyzed Atmospheric Emitted Radiance Interferometer data to estimate fluctuations in atmospheric constituents. To allow separation of the effects of background and atmospheric variability, hyperspectral data was synthesized using large sets of simulated atmospheric spectra, measured background emissivity spectra, and measured high-resolution gas absorbance spectra. The atmosphere was simulated using FASCODE in which the constituent gas concentrations and temperatures were varied. These spectral sets were combined synthetically using a physics model to realize a statistical synthetic scene with a plume present in a portion of the image. Noise was added to the image with the level determined by a numerical model of the hyperspectral imaging instrument. The chemical detection performance was determined by applying a matched-filter estimator to both the on-plume and off-plume regions. The detected levels in the off-plume region were then used to determine the noise equivalent concentration path length (NECL), a measure of the chemical detection sensitivity. The NECL was estimated for numerous gases and for a variety of background and atmospheric conditions to determine the relative impact of instrument noise, background variability, and atmospheric variability.
The small size, high power, promise of access to any wavelength between 3.5 and 16 microns, substantial tuning range about a chosen center wavelength, and general robustness of quantum cascade (QC) lasers provide opportunities for new approaches to ultra-sensitive chemical detection and other applications in the mid-wave infrared. PNNL is developing novel remote and sampling chemical sensing systems based on QC lasers, using QC lasers loaned by Lucent Technologies. In recent months laboratory cavity-enhanced sensing experiments have achieved absorption sensitivities of 8.5 x 10-11 cm-1 Hz-1/2, and the PNNL team has begun monostatic and bi-static frequency modulated, differential absorption lidar (FM DIAL) experiments at ranges of up to 2.5 kilometers. In related work, PNNL and UCLA are developing miniature QC laser transmitters with the multiplexed tunable wavelengths, frequency and amplitude stability, modulation characteristics, and power levels needed for chemical sensing and other applications. Current miniaturization concepts envision coupling QC oscillators, QC amplifiers, frequency references, and detectors with miniature waveguides and waveguide-based modulators, isolators, and other devices formed from chalcogenide or other types of glass. Significant progress has been made on QC laser stabilization and amplification, and on development and characterization of high-purity chalcogenide glasses, waveguide writing techniques, and waveguide metrology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.