This study presents a novel high-efficiency electro-optic (EO) light modulator whose operation is based on the attenuated total reflection effect, in which the surface plasmon wave is excited by an incident waveguide light wave. The EO light modulator is fabricated using a nonlinear optical polymer material that is a side-chain EO polyimide with 2-[N-ethyl-4-(tricyanovinyl)anilino]ethanol chromophore. The modulator is characterized, and its performance tested, in terms of the thickness and dielectric constant of the polymer thin film, the EO coefficient, the insertion loss, and the modulation index. Additionally, the dynamic response of the EO light modulator is fully investigated and discussed.
A novel high efficiency electro-optic polymer light modulator based on waveguide-coupled surface plasmon resonance (WCSPR) is presented. The modulator consists of a five-layer system: dielectric layer/metal film/electro-optic (E-O) polymer layer/metal film/air. By combining WCSPR based on attenuated total reflection (ATR) method and Pockels effect from poled E-O polymer, we demonstrate that this kind of modulator operated with less applying modulation voltage, less optical insertion loss, and easy alignment compared to other light modulation techniques. Also, in this paper the theoretical derivation of WCSPR, the optimum design concerning the relation between the efficiency of modulator and E-O layer thickness, and the fabrication process of the E-O polymer light modulator are presented. This modulator is shown to allow a greater degree of modulation for a given voltage with working point chosen near the midst of WCSPR mode in the visible range.
The biosensors based on surface plasmon resonance (SPR) are often used as tools for directly detecting the kinetic interaction of unlabelled biological molecules at surface in real time. With the measured SPR reflection spectrum, we can detect a shift in the location and quantity of the reflection spectrum minimum and the half width at half maximum due to the change in the thickness or the refractive index of a thin dielectric film layer. The interested parameters of analyte layer or monolayer, like the molecular size and concentration, can be determined either with analytical approaches or linear data analysis approaches. Depends on the number of parameters need to be resolved, we may need either multiple spectra (two color method) or only one sensing spectrum under the assumption that the other film parameter is given for multiple parameters case. Although it is possible to estimate multiple parameters from only one sensing spectrum by linear estimation techniques, it suffers from not only the shortcoming for larger variance in the estimates from those techniques than that of multiple spectra method but also the difficulty for choosing the appropriate initial value in the estimation process. In this paper, we propose a modified analytic approach to attain suitable initial parameters that close enough to the exact value. Furthermore, we incorporated multi-experiment method into linear estimation algorithms to determine the optimal estimated parameters with smaller variability of the estimated parameters. In that manner, it would be benefit to reject the colored noise accidentally results from experiment process. The experimental data with the multi-experiment linear data analysis demonstrates that it has ability to sense slightly index change in consequence of argon gas flow through the nitrogen.
Surface plasmon resonance (SPR) imaging system is presented as a novel technique based on modified Mach-Zehnder phase-shifting interferometry (PSI) for biomolecular interaction analysis (BIA), which measures the spatial phase variation of a resonantly reflected light in biomolecular interaction. In this technique, the micro-array SPR biosensors with over a thousand probe NDA spots can be detected simultaneously. Owing to the feasible and swift measurements, the micro-array SPR biosensors can be extensively applied to the nonspecific adsorption of protein, the membrane/protein interactions, and DNA hybridization. The detection sensitivity of the SPR PSI imaging system is improved to about 1 pg/mm2 for each spot over the conventional SPR imaging systems. The SPR PSI imaging system and its SPR sensors have been successfully used to observe slightly index change in consequence of argon gas flow through the nitrogen in real time, with high sensitivity, and at high-throughout screening rates.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.