In order to cope with the fast increase in data traffic demand, optical networks are fast evolving towards the disaggregation and progressive implementation of the openness paradigm. Such an evolution is enabling the application of the software-defined networking below the IP layer, down to the optical transmission (SD-OTN). SD-OTN is enabled by the capability of the network controller to automatized management of photonic switching systems, and allowing their full virtualization and softwarisation. To this purpose, one of the major matter of contention is an efficient utilization of routing strategies, which can be seamlessly incorporated into the control plane. In this work, we rely on data-driven science (DDS) to develop the machine learning (ML) model which is able to predict the routing strategies of generic N x N photonic switching system without any knowledge required of the topology. The dataset used for training and testing the ML model is generated “synthetically”. In particular, the training and testing of the proposed ML module is done in a completely topological and technological agnostic way and is able to perform its application in real-time. Furthermore, the scalability and accuracy of the proposed approach is verified by considering two different switching topologies: the Honey-Comb Rearrangeable Optical Switch and the Beneš network. Promising results are achieved in terms of predicting the control signals matrix for both of the considered topologies.
Using the vertical integration of the Synopsys environment, we analyze a 2 2 integrated optical switch obtaining a layer-0 abstraction used to analyze the impact of the design options on transmission performances of a PM-64QAM 600G channel in multi-hop routing in meshed optical networks. The optical switch is designed targeting the Analog Photonics Process Design Kit. The QoT degradation depending on the design option and on the choice for the transmission technique is assessed, taking into account the number of traversed switches. In addition, different routing techniques for the integrated optical waveguides of the 2x2 switches are investigated in terms of system performances.
The reported analysis is an example of comprehensive investigation carried out by abstracting the network elements starting from the component design up to the networking management. This approach is today mandatory to enable the maximum capacity in state-of-the art optical networks. To face this challenging problem, Synopsys proposes a vertically integrated software environment for the design of optical communication systems with photonic integrated circuits: it is the integration of OptSim c -optical communication system, OptSim Circuit -schematic-driven photonic circuit, OptoDesigner c -mask layout, and RSoft component design tools. These tools have proven to be reliable aids to virtually designing and estimating the performance of optical transmission systems and photonic chips.
We demonstrate an optimized silicon photonic link architecture using components from the AIM PDK that achieves an ultra-low sub-pJ/bit power consumption with an aggregate bandwidth of 480 Gb/s. At the transmitter, micro-disk modulators are cascaded along a bus waveguide to select and modulate wavelength-division multiplexed (WDM) channels. At the receiver, micro-ring resonator (MRR) filters are thermally tuned to match the corresponding disks to select from the multiplexed channels. This link architecture yields an ultra-small footprint compared to Mach-Zehnder designs, improving the system scalability and bandwidth density. Additionally, using micro-resonators to select and drop the desired wavelengths from a single bus waveguide allows for straightforward integration with a frequency comb source. The energy performance of the design is optimized through sweeping over three key parameters: (i) optical power per channel, (ii) channel count, and (iii) bitrate. These parameters are the dominant sources for the crosstalk and power penalty in the link design. We identify ideal points in the design space which minimize the energy per bit while staying below the desired bit error rate (BER) of 10-12 and maintaining a realistic aggregate bandwidth. Simulations in the Synopsys OptSim environment using the AIM PDK v2.5a models confirm the functionality of the system with a BER < 10-12, acceptable for both high performance computing (HPC) and data center (DC) applications. Furthermore, optimizing the link energy consumption in the AIM PDK provides a clear path towards low-cost and high-yield fabrication suitable for application in HPC and DC systems.
In this paper, we demonstrate a computer model for simulating a dual-rate burst mode receiver that can
readily distinguish bit rates of 1.25Gbit/s and 10.3Gbit/s and demodulate the data bursts with large power
variations of above 5dB. To our knowledge, this is the first such model to demodulate data bursts of
different bit rates without using any external control signal such as a reset signal or a bit rate select signal.
The model is based on a burst-mode bit rate discrimination circuit (B-BDC) and makes use of a unique
preamble sequence attached to each burst to separate out the data bursts with different bit rates. Here, the
model is implemented using a combination of the optical system simulation suite OptSimTM, and the
electrical simulation engine SPICE. The reaction time of the burst mode receiver model is about 7ns, which
corresponds to less than 8 preamble bits for the bit rate of 1.25Gbps. We believe, having an accurate and
robust simulation model for high speed burst mode transmission in GE-PON systems, is indispensable and
tremendously speeds up the ongoing research in the area, saving a lot of time and effort involved in
carrying out the laboratory experiments, while providing flexibility in the optimization of various system
parameters for better performance of the receiver as a whole. Furthermore, we also study the effects of
burst specifications like the length of preamble sequence, and other receiver design parameters on the
reaction time of the receiver.
Passive Optical Network (PON) based access architecture is the most favored choice for delivery of triple-play
services today. This paper reviews various PON technologies, requirements, challenges and trade-offs
involved in modeling and design optimizations of PON systems and
sub-systems, mainly from the physical
layer perspective.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.