In this paper, the experimental investigation on the interaction length for getting the optimum diffraction of the multi-order acousto-optic diffraction is presented. Based on these results, the feasibility of acousto-optic Q-switch taking H2O or TeO2 as medium respectively for ultraviolet and visible lasers are discussed. The fact that the optimum interaction length tightly relies on the frequency of the sound and does not relate to the wavelength and power of the light is found in the experiment. The interaction length will become longer as the frequency of the ultrasound becomes higher. The interaction length is about 8mm when the acoustic frequency is at about 9MHz and becomes about 4mm at 6MHz. A Q-switch that works with pure water is designed and a total diffractive efficiency of about 98% was obtained under the condition that the acoustic frequency is 9MHz and the acoustic power is 3.4W. An acousto-optic Q-switch made of TeO2, in terms of Raman-Nath diffraction is designed. With a cooling system on the device, a total diffractive efficiency of about 75% is obtained under the condition that the acoustic frequency is 10MHz and the acoustic power is 10W. The loss by one path of the device is about 5% on the best condition. Then the modulated pulse width is measured as about 200ns on the condition that the acoustic frequency is 11MHz, the acoustic power is 6W and the repetition frequency is 10kHz.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.