Knowledge of sea clutter is of great significance in marine target detection and discrimination. In this paper, the wideband backscattering electromagnetic (EM) fields of two-dimensional (2-D) sea surfaces are numerically calculated employing the weighted curvature approximation (WCA) method. Monte Carlo trials are performed to investigate the influences of radar parameters on the statistical characteristics of the rang-resolved sea clutter. It is found that the sea clutter tends to be spikier with finer radar resolution, lower grazing angle, narrower beam width, and in the upwind direction. Meanwhile, the Pareto distribution is demonstrated to describe the statistics of the sea clutter intensities very well.
Estimation accuracy of sea clutter plays an important role in target detection and location. In this paper, a generalized likelihood ratio test (GLRT)-entropy joint location approach for low radar cross section (RCS) target in heavy sea clutter is proposed, which takes use of both estimated probability and localized entropy of the range image. After performing detection of target based on GLRT, the proposed approach identifies the target range bin by comparing localized entropies, which are obtained before and after clutter suppression respectively. Simulation results demonstrate performance advantages of the proposed approach over the one where only probability or entropy is used.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.