Stimulated Raman Scattering (SRS) is an important nonlinear process in optical fibers that can realize the MIR wavelength shift from our existing pump source. In this paper, we experimentally investigated an efficient 2.19- and 2.42 μm cascaded Raman pulse fiber laser that was composed of 2 μm electronically modulated pulse source, one typically three-stage Tm-doped fiber amplifier and a segment of commercially nonlinear fiber. A simple single-pass configuration was built to avoid the bandwidth limitation of optical components for Raman pulse generation at longer wavelengths.
We demonstrate an all-fiber SC laser source based on a 0.9 m-long 94 mol.% GCF which was pumped by a Single-Mode (SM) TDFA-based 1.9~2.7 μm laser source. A 2.59 W flat SC spectrum with coverage of 1.9~3.5 μm were achieved under a seed pulse repetition rate of 600 kHz and a pulse duration of 1 ns. The 3 dB bandwidth was 1210 nm ranging from 1970 to 3180 nm and the 10 dB bandwidth was 1380 nm ranging from 1920 to 3300 nm.
We numerically investigate a Raman soliton source cascaded by a fluorotellurite fiber and a chalcogenide fiber. By using a 2.8 μm fiber laser with a pulse width of 137 fs as the pump light, widely tunable Raman solitons spanning from 2.8 to 8.1μm are observed in the nonlinear media cascaded by 5 cm fluorotellurite fiber and 10 cm chalcogenide fiber. The pulse width of the red-shift soliton at 8.1 μm is 132 fs. For the first time we propose the idea of coupling the tellurite fiber and chalcogenide fiber to further enhance the SSFS effect in mid infrared region (MIR). Our simulated results show the possibility of generating long wavelength Raman soliton use a source cascaded by fluorotellurite fiber and chalcogenide fiber
In this work, we demonstrated a numerical model of 3.5 μm mid-infrared Er3+-doped ZBLAN fiber laser based on 655 nm and 1981 nm dual-wavelength pump(DWP) for the first time. Comparisons between simulation and experimental results are presented. And we optimize parameters such as fiber length, output coupler reflectivity and pumping method of two DWP schemes. Selecting the same 1981nm pump power, the output of parallel DWP scheme is larger under their respective optimal conditions.
We demonstrated a three-stage cascaded Raman soliton frequency shift structure in mid-infrared region (MIR) through numerical simulation. By cascading germania-core fiber, Er3+ ZBLAN fiber amplifier with an indium fluoride or (InF3) or TeO2-Bi2O3-ZnO-Na2O (TBZN) fiber, we achieved 2-4.75 μm and 2-5.5 μm tunable range respectively. When the same tunable range was achieved, both the energy and conversion efficiency of Raman solitons in the designed three stage cascaded structure were greatly improved, comparing with structure with single Raman shifter fiber. Our work could provide an effective way to improve the energy and conversion efficiency of Raman solitons in the commonly used single Raman frequency shift structure.
A wide wavelength tunable Er3+: ZBLAN passively mode-locked fiber laser operating in the 3 μm mid-infrared region with Ti3C2Tx as a saturable absorber has been presented. The wavelength was selected by rotating the blazed grating. The fiber laser can achieve stable continuous-wave mode-locked state in the wide wavelength tuning range of 118.6 nm (2709 nm~2827.6 nm) with a repetition frequency of 28.3 MHz. When the launched pump power is 1.77 W, a stable mode-locked pulse with a maximum output power of 137.4 mW can be obtained at 2786 nm, and the corresponding single pulse energy is ~4.9 nJ. However, the pulse duration was not measured by the autocorrelator due to the limited output power. To the best of our knowledge, this is a passively mode-locked fiber laser at ~3 μm with the largest tuning range based on a saturable absorber. The presented widely wavelength tunable laser is a stable seed source for applications in laser medical treatment, spectroscopy and supercontinuum generation.
This paper presents an effective fixed pattern noise (FPN) removal method (PCA wavelet method). Compared with the traditional filtering method and statistical method, PCA wavelet method has better denoising effect. Compared with the optimization method, PCA wavelet method has faster processing speed. It is a comprehensive FPN removal method. Compared with the optimization method, this method does not need complicated parameter adjustment process, but has similar denoising effect with the optimization method. This method is very suitable for the engineering application which has certain requirements for calculation speed and denoising effect.
Spot location algorithms greatly influence the wavefront measurement error of the Shack–Hartmann wavefront sensor. Based on numerical simulations and experiments, we compare the wavefront reconstruction error of several spot location algorithms under different signal-to-noise ratio (SNR) conditions. We solve the problem of how to select the most suitable spot location algorithm and optimal parameters under different SNR conditions, which mimic the realistic working environment of the adaptive optics system changes. We find the optimal threshold and optimal window setting rules of the center of gravity (COG), intensity weighted centroiding, and weighted center of gravity (WCOG) algorithms. The correctness of our recommendation of spot location algorithms under different SNR conditions is supported by numerical simulations and experiments. We find that when the SNR is extremely low, that is the SNR is lower than 2, the cross-correlation algorithm and the thresholding WCOG algorithm are the best choices. When the SNR is moderately low, that is the SNR ranges from 2 to 10, the best choice is the thresholding WCOG algorithm. When the SNR is high, that is, the SNR is higher than 10, the simple algorithm of thresholding COG is the best choice.
The centroid method is commonly adopted to locate the spot in the sub-apertures in the Shack-Hartmann wavefront sensor (SH-WFS), in which preprocessing image is required before calculating the spot location due to that the centroid method is extremely sensitive to noises. In this paper, the SH-WFS image was simulated according to the characteristics of the noises, background and intensity distribution. The Optimal parameters of SH-WFS image preprocessing method were put forward, in different signal-to-noise ratio (SNR) conditions, where the wavefront reconstruction error was considered as the evaluation index. Two methods of image preprocessing, thresholding method and windowing combing with thresholding method, were compared by studying the applicable range of SNR and analyzing the stability of the two methods, respectively.
We demonstrate that two kinds of 2D nanomaterials are employed as saturable absorbers to realize infrared pulsed fiber lasers at 1.5 μm and 3 μm, respectively. Mode-locked optical pulses are achieved at 1.5 μm erbium-doped fiber lasers by using multilayer molybdenum disulfide (MoS2). In addition, Q-switched fiber lasers are realized at 3 μm region by using topological insulator: Bi2Te3. Experimental proofs are provided. Our work reveals that 2D nanomaterials like MoS2 and TI: Bi2Te3 are absolutely a class of promising and reliable saturable absorbers for optical pulse generation at infrared waveband.
Due to their unique dispersion and nonlinear properties, chalcogenide suspended-core fibers, characterized by a few micrometer-sized core suspended between large air-holes by few small glass struts, are excellent candidates for mid-infrared applications. In the present study the influence of the main cross-section characteristics of the chalcogenide suspended-core fibers on the dispersion curve and on the position of the zero-dispersion wavelength has been thoroughly analyzed with a full-vector modal solver based on the finite element. In particular, the design of suspended-core fibers made of both As2S3 and As2Se3 has been optimized to obtain dispersion properties suitable for the supercontinuum generation in the mid-infrared.
A one-dimensional Fourier transform of a Rayleigh backscattering traces matrix along the traces direction method has been proposed to simultaneously extract location and frequency information of vibration in the distributed vibration sensing system based on phase-sensitive optical time domain reflectometry. Meanwhile, the signal-to-noise ratio (SNR) of the proposed method also can be improved as the signals are processed in the frequency domain since in the frequency domain, noise is “slow change” compared with the vibration. Then, experiments on two-point vibrations have been done. An SNR of 9.5 dB was achieved, and the spatial resolution is also improved to 3.7 m with a 50 ns pulse width and 2.7 km long fiber owing to the improved SNR.
Chalcogenide suspended core fibers are a valuable solution to obtain supercontinuum generation of light in the
mid-infrared, thanks to glass high transparency, high index contrast, small core diameter and widely-tunable
dispersion. In this work the dispersion and nonlinear properties of several chalcogenide suspended core microstructured
fibers are numerically evaluated, and the effects of all the structural parameters are investigated.
Optimization of the design is carried out to provide a fiber suitable for wide-band supercontinuum generation in
the mid-infrared.
Mid-infrared pulsed fiber laser with centered wavelength from 2 to 5 μm have attracted substantial attention owing to their potential applications in defence, laser microsurgery, material processing, nonlinear frequency conversion, etc. We demonstrated our recent achievements at 3 μm pulsed fiber lasers by utilizing Q-switching method. Firstly, a cascaded dual wavelength actively Q-switched Ho3+-doped ZBLAN fiber was reported by inserting an external electrically driven acoustic-optical modulator (AOM) into the cavity. The 3.0 μm and 2.07 μm pulse trains were achieved with a μs level time delay corresponding to the pulse energy of 29 μJ and 7 μJ, pulse duration of 380 ns and 260 ns, respectively. The narrower pulse width in this case compared to that in passively Q-switched fiber lasers can be attributed to the much higher modulation depth of AOM. Using a reversely designed semiconductor saturable mirror (SESAM) as the saturable absorber (SA), we presented a passively Q-switched Ho3+-doped ZBLAN fiber laser operating at ~2971 nm, the obtained maximum pulse energy of 6.65 μJ only limited by the maximum pump power was also the highest level from passively Q-switched fiber lasers at this wavelength range, and corresponding pulse repetition rate and duration were 47.6 kHz and 1.68 μs, respectively. Then using a Fe2+: ZnSe crystal with an initial transmission of 69 % as the SA, a passively Q-switched Ho3+-doped ZBLAN fiber laser operating at 2970.3 nm was also achieved. The obtained pulse duration and repetition rate were 1.92 μs and 62.74 kHz, respectively with an output power of 266 mW and a pulse energy of 4.24 μJ. The further performance improvements were possible because they were just limited by the maximum pump power. To sum up, the above achievements would be beneficial for further development of mid-infrared pulsed fiber lasers.
Cardiovascular health of the human population is a major concern for medical clinicians, with cardiovascular diseases responsible for 48% of all deaths worldwide, according to the World Health Organisation. Therefore the development of new practicable and economical diagnostic tools to scrutinise the cardiovascular health of humans is a major driver for clinicians. We offer a new technique to obtain seismocardiographic signals covering both ballistocardiography (below 20Hz) and audible heart sounds (20Hz upwards). The detection scheme is based upon an array of curvature/displacement sensors using fibre optic long period gratings interrogated using a variation of the derivative spectroscopy interrogation technique
A diode-cladding-pumped mid-infrared passively Q-switched Ho3+-doped fluoride fiber laser using a reverse designed
broad band semiconductor saturable mirror (SESAM) was demonstrated. Nonlinear reflectivity of the SESAM was
measured using an in-house Yb3+-doped mode-locked fiber laser at 1062 nm. Stable pulse train was produced at a slope efficient of 12.1% with respect to the launched pump power. Maximum pulse energy of 6.65 μJ with a pulse width of
1.68 μs and signal to noise ratio (SNR) of ~50 dB was achieved at a repetition rate of 47.6 kHz and center wavelength of
2.971 μm. To the best of our knowledge, this is the first 3 μm region SESAM based Q-switched fiber laser with the
highest average power and pulse energy, as well as the longest wavelength from mid-infrared passively Q-switched
fluoride fiber lasers.
The polarization maintaining fiber has been playing an important role in the fields of optical fiber sensing, communication, and so on. The beat length is one of the main parameters of polarization maintaining fiber, and it usually represents its polarization maintaining performance. In this paper, the beat length variation of Panda fiber with external force is investigated. The simulation results indicate that the beat length variation was determined both by the external force value F and the angle θ between the external force direction and the slow axis of Panda fiber. When F is a constant, the beat length of polarization maintaining fiber is changed in sinusoidal form whose various cycle is π with the variation of θ. Meanwhile, the minimum and maximum values of beat length will be obtained when the angles are even multiple of π/2 or odd multiple of π/2, respectively. When θ is a constant, the beat length is changed in linear form with the increasing of external force value. Finally, the experimental system of beat length measurement based on Sagnac interferometer loop is illustrated, and the result shows an excellent agreement with the theoretical analysis.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.