Photoacoustic imaging (PAI) is a hybrid imaging modality that uses ultrasound waves generated from light absorbing tissue chromophores to provide high spatial resolution and depth-resolved molecular information. However, conventional PAI setups involve complicated arrangement of optical components surrounding opaque ultrasound transducers to achieve a co-aligned optical illumination and ultrasound receiving field. This opacity of traditional ultrasound transducers impedes the miniaturization of the imaging head, besides precluding integration with other imaging modalities. To overcome these limitations, we recently fabricated a single element transparent ultrasound transducer (TUT) window using indium tin oxide (ITO) coated lithium niobate (LiNbO3) piezoelectric material and demonstrated its application for endoscopy and microscopy PAI applications. Extending on this work, we report new developments of TUTs to improve their detection bandwidth, sensitivity, and signal to noise ratio (SNR) while maintaining sufficient transparency. This includes investigating LiNbO3 and PMN-PT as transparent piezoelectric materials with different matching layer designs. Fabricated TUTs were characterized using pulse echo and electrical impedance analysis. The PAI performance of the fabricated TUTs were characterized using photoacoustic A-line signals from light absorbing targets. The proposed TUTs are low cost, easy to fabricate, and can be scaled and easily integrated into different PAI geometries such as: endoscopy, microscopy, and computed tomography systems for high-throughput imaging applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.