ColdQuanta’s microShutter is a free-space, chip-scale mechanical shutter designed for laser shuttering applications. The microShutter breaks through the size constraints of MEMS fiber shutters by eliminating the optical fiber and operating on the beam inline and in free-space. The microShutter allows laser shuttering in a form factor and with a power budget that enables high performance optical applications in hand-held devices. Uniquely, each microShutter chip integrates a beam dump that captures stray light in an on-board light trap. The microShutter is designed to the power, performance, and size requirements of portable atomic clocks and other compact atomic systems requiring free-space optical distribution. The prototype chip has been demonstrated to draw less than 0.5 μA at 150 V. A low power driver circuit that can operate the microShutter with 2.5 mW with a 4V supply has been demonstrated. Early prototypes demonstrate extinction below -45 dB with insertion loss of -2 dB, an open-closed transition time of 12 μs and closed-open transition time of 14 µs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.