As astronomical observations from space benefit from improved sensitivity, the effectiveness of scientific programs is becoming limited by systematics that often originate in poorly understood image sensor behavior. Traditional, bottom-up detector characterization methods provide one way to model underlying detector physics and generate ever more faithful numerical simulations, but this approach is vulnerable to preconceptions and over-simplification. The alternative top-down approach is laboratory emulation, which enables observation, calibration, and analysis scenarios to be tested without relying on a complete understanding of the underlying physics. This complements detector characterization and simulation efforts by testing their validity. We describe a laboratory facility and experimental testbed that supports the emulation of a wide range of mission concepts such as gravitational weak lensing measurements by the Wide Field Infrared Survey Telescope and high precision spectrophotometry of transiting exoplanets by James Webb Space Telescope. An Offner relay projects readily customizable “scenes” (e.g., stars, galaxies, and spectra) with very low optical aberration over the full area of a typical optical or near-infrared image sensor.
We have developed a flexure Compensation and Simulation (FCS) tool for TMT-WFOS that provides an interface to accurately simulate the effects of instrument flexure at the WFOS detector plane (e.g image shifts) using perturbation of key optical elements and also derive corrective motions to compensate the image shifts caused by instrument flexure. We are currently using the tool to do mote-carlo simulations to validate the optical design of a slit-mask concept we call Xchange-WFOS, and to optimize the flexure compensation strategy. We intend to use the tool later in the design process to predict the actual flexure by replacing the randomized inputs with the signed displacement and rotations of each element predicted by global FEA model on the instrument..
View contact details