In a conventional slot waveguide structure, light is strongly confined in the slot region only either for the quasi-transverse electric (TE) (in a vertically oriented slot) or for the quasi-transverse magnetic (TM) (in a horizontally oriented slot) fundamental eigenmode, which enhances the optical forces, thus decreasing the optical power necessary to control the displacement of the device, but only for one eigenmode polarization at a time. In this work, we analyzed the optical forces in a cross-slot waveguide, which is formed by four suspended silicon waveguides separated by two orthogonal air slots. Cross-slot waveguides can strongly confine light in both quasi-TE and quasi-TM polarizations, thus enhancing the optical force and reducing the optical power for both. Our simulation results show that by adjusting the optical power and the light polarization, it is possible to control the displacement of the waveguides in the vertical or in the horizontal direction almost individually, or in both directions simultaneously. The proposed nano-optomechanical device has potential applications in active photonic devices and novel mechanisms for nanosensors and nanoactuators, such as optical nanogrippers and nanotweezers.
In a conventional slot waveguide structure, light is strongly confined in the slot region only either for the Quasi-TE (in a vertically oriented slot) or for the Quasi-TM (in a horizontally oriented slot) fundamental eigenmode, which enhances the optical forces, thus decreasing the optical power necessary to control the displacement of the device, but only for one eigenmode polarization at a time. In this work, we analyzed the optical forces in a cross-slot waveguide, which is formed by four suspended silicon waveguides separated by two orthogonal air slots. Cross-slot waveguides can strongly confine light in both Quasi-TE and Quasi-TM polarizations, thus enhancing the optical force and reducing the optical power for both. Our simulation results show that, by adjusting the optical power and the light polarization, it is possible to control the displacement of the waveguides in the vertical or in the horizontal direction almost individually, or in both directions simultaneously. The proposed NOMS device offers potential applications in active photonic devices, novel nanosensing and nanoactuators mechanisms, such as optical nanotweezers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.