High power continuous and pulsed fiber lasers and amplifiers have become more prevalent in laser systems over the last ten years. In fielding such systems, strong environmental and operational factors drive the packaging of the components. These include large operational temperature ranges, non-standard wavelengths of operation, strong vibration, and lack of water cooling. Typical commercial fiber components are not designed to survive these types of environments. Based on these constraints, we have had to develop and test a wide range of customized fiber-based components and systems to survive in these conditions. In this paper, we discuss some of those designs and detail the testing performed on those systems and components. This includes the use of commercial off-the-shelf (COTS) components, modified to survive extended temperature ranges, as well as customized components designed specifically for performance in harsh environments. Some of these custom components include: ruggedized/monolithic fiber spools; detachable and repeatable fiber collimators; low loss fiber-to-fiber coupling schemes; and high power fiber-coupled isolators.
As tactical military lasers become more complex and the requirement for effectiveness increases, the stability of the optics comprising those lasers becomes critical. Boresight stability requirements for individual optomechanical subassemblies are in the sub-100 microradian range with temperature excursions of up to 80 degrees C. Even the most detailed Finite Element Modeling is ineffective in predicting performance to the accuracy and resolution required. Boresight error allocations of individual optical subassemblies must be verified with test. Boresight tests were performed on several optical subsystems of a military laser required to hold boresight in an airborne military environment. The units tested were fabricated and assembled using the materials and processes prescribed for production. The purpose of the testing was to verify that the subsystems do not exceed their allocated stability tolerance. The results show angular shift in azimuth and elevation over a temperature range of -54 to +71 C. Assembly of the units was performed at approximately 23 degrees C.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.