The NSF’s Daniel K Inouye Solar Telescope (DKIST) is the world’s largest solar telescope at the summit of Haleakalā. All large observatories are subject to the negative impacts of vibrations, therefore, one of the goals during the operations and commissioning phase is to collect data to identify and mitigate image jitter. DKIST has five high spatial resolution facility instruments spread across a 16-meter rotating platform. Vibration sources such as moving instrument components, environmental control systems, and active optics can induce image jitter differently across large distances, causing non-common path errors uncorrectable by AO systems. We built a new tool called the Vibrometer, a high speed image tracker designed to measure image motion in order to assess the system optical vibrations at 2kHz rates. We will present how the Vibrometer played a vital role in eliminating the image jitter observed in the Visible Spectro-Polarimeter (ViSP) instrument's slit scanning images. The image jitter was caused by mechanical motion of the Visible Broadband Imager's (VBI) large two-axes camera stage while performing image mosaic scans during simultaneous measurements.
The US National Science Foundation 4m Daniel K. Inouye Solar Telescope (DKIST) on Haleakala, Maui is the largest solar telescope in the world. DKIST’s superb resolution and polarimetric sensitivity will enable astronomers to explore the origins of solar magnetism, the mechanisms of coronal heating and drivers of flares and coronal mass ejections. DKIST operates as a coronagraph at infrared wavelengths, providing crucial measurements of the magnetic field in the corona. During its Operations Commissioning Phase, DKIST has already conducted a significant number of shared-risk observations for community researchers. The complex raw data are calibrated by the DKIST Data Center located in Boulder and distributed to the science community. We’ll present examples of science results and discuss lessons learned. Ongoing instrument development efforts include, an upgrade of the single-conjugate adaptive optics system to a multi-conjugate AO, the implementation of image slicers for the DL-NIRSP instrument and development of infrared detectors the DL- and CRYO-NIRSP instruments.
The Diffraction-Limited Near Infrared Spectropolarimeter (DL-NIRSP) is a facility instrument of the U.S. National Science Foundation’s Daniel K. Inouye Solar Telescope (DKIST). DL-NIRSP was originally commissioned with a birefringent fiber optic image slicer for high resolution observations of the solar atmosphere to support contiguous 2D-spatial, spectral, and polarimetric measurements in three channels between 500 and 1800 nm with very high spectral resolution over narrow bandpasses. During commissioning, we found temporal variations of the flat field and other fiber-related issues limited instrument performance. To resolve these various problems, we replaced the existing fiber-based image slicer with the high resolution Machined Image Slicer Integral Field Unit with 36 micrometer wide slicer mirrors (MISI-36). We report on the implementation and optical testing of MISI-36.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.