The ComPair balloon instrument is a prototype of the All-sky Medium Energy Gamma-ray Observatory (AMEGO) mission concept. AMEGO aims to bridge the spectral gap in sensitivity that currently exists from ∼100 keV to ∼100 MeV by being sensitive to both Compton and pair-production events. This is made possible through the use of four subsystems working together to reconstruct events: a double-sided silicon strip detector (DSSD) Tracker, a virtual Frisch grid cadmium zinc telluride (CZT) Low Energy Calorimeter, a ceasium iodide (CsI) High Energy Calorimeter, and an anti-coincidence detector (ACD) to reject charged particle backgrounds. Composed of 10 layers of DSSDs, ComPair’s Tracker is designed to measure the position of photons that Compton scatter in the silicon, as well as reconstruct the tracks of electrons and positrons from pair-production as they propagate through the detector. By using these positions, as well as the absorbed energies in the Tracker and 2 Calorimeters, the energy and direction of the incident photon can be determined. This proceeding will present the development, testing, and calibration of the ComPair DSSD Tracker and early results from its balloon flight in August 2023.
The ComPair balloon instrument is a prototype gamma-ray telescope that aims to further develop technology for observing the gamma-ray sky in the MeV regime. ComPair combines four detector subsystems to enable parallel Compton scattering and pair-production detection, critical for observing in this energy range. This includes a 10 layer double-sided silicon strip detector tracker, a virtual Frisch grid low energy CZT calorimeter, a high energy CsI calorimeter, and a plastic scintillator anti-coincidence detector. The inaugural balloon flight successfully launched from the Columbia Scientific Balloon Facility site in Fort Sumner, New Mexico, in late August 2023, lasting approximately 6.5 hours in duration. In this proceeding, we discuss the development of the ComPair balloon payload, the performance during flight, and early results.
The ComPair gamma-ray telescope is a technology demonstrator for a future gamma-ray telescope called the All-sky Medium Energy Gamma-ray Observatory (AMEGO). The instrument is composed of four subsystems, a double-sided silicon strip detector, a virtual Frisch grid CdZnTe calorimeter, a CsI:Tl based calorimeter, and an anti-coincidence detector (ACD). The CsI calorimeter's goal is to measure the position and energy deposited from high-energy events. To demonstrate the technological readiness, the calorimeter has flown onboard a NASA scientific balloon as part of the GRAPE-ComPair mission and accumulated around 3 hours of float time at an altitude of 40 km. During the flight, the CsI calorimeter observed background radiation, Regener-Pfotzer Maximum, and several gamma-ray activation lines originating from aluminum.
There is a growing interest in the science uniquely enabled by observations in the MeV range, particularly in light of multi-messenger astrophysics. The Compton Pair (ComPair) telescope, a prototype of the AMEGO Probe-class concept, consists of four subsystems that together detect and characterize gamma rays in the MeV regime. A double-sided strip silicon Tracker gives a precise measure of the first Compton scatter interaction and tracks pair-conversion products. A novel cadmium zinc telluride (CZT) detector with excellent position and energy resolution beneath the Tracker detects the Compton-scattered photons. A thick cesium iodide (CsI) calorimeter contains the high-energy Compton and pair events. The instrument is surrounded by a plastic anti-coincidence (ACD) detector to veto the cosmic-ray background. In this work, we will give an overview of the science motivation and a description of the prototype development and performance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.