The performance and robustness of fatigue detection largely decrease if the driver with glasses. To address this issue, this paper proposes a practical driver fatigue detection method based on face alignment at 3000 FPS algorithm. Firstly, the eye regions of the driver are localized by exploiting 6 landmarks surrounding each eye. Secondly, the HOG features of the extracted eye regions are calculated and put into SVM classifier to recognize the eye state. Finally, the value of PERCLOS is calculated to determine whether the driver is drowsy or not. An alarm will be generated if the eye is closed for a specified period of time. The accuracy and real-time on testing videos with different drivers demonstrate that the proposed algorithm is robust and obtain better accuracy for driver fatigue detection compared with some previous method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.