Space gravitational wave detection is one of the most critical techniques that maintain high stability of the laser link to reduce the coupling of ranging noise. We model and simulate the laser pointing jitter noise of the laser link between two satellites and build an experimental system for testing. We adopt an FFT-based method for Monte Carlo generation of a random noise time-series signal with a prescribed power spectral density. This experimental system with noise inputs can be simulated in a way that is more consistent with the actual operation of the satellite in space. The experimental results show that laser pointing jitter noise mainly comes from the jitter of the satellite platform. In the 1 mHz to 1 Hz band, laser pointing jitter noise is an order of magnitude higher in the space environment than in the laboratory environment. However, the pointing system can still suppress the laser pointing jitter noise to the noise floor.
In the Taiji mission, since the transmission distance of the inter-satellite laser link reaches three million kilometers, the wavefront of its laser transmission will be distorted. Therefore, laser interferometric relative distance measurements can be significantly affected by laser-pointing jitter noise. We built a ground verification system based on the Michelson interferometer to verify critical technologies. At the same time, we analyzed the control characteristics of the system from the perspectives of frequency and time domains. In the end, we successfully built the system in the atmospheric environment of the laboratory and carried out related technical verifications. The experimental results show that in the case of 4µrad/√ Hz@10mHz disturbance, the system can suppress the laser pointing jitter noise to 31.2nrad/√ Hz@10mHz (inner ring data) and 385.7nrad/√ Hz@10mHz (outer ring data), and the effect has reached below the noise floor. The experiment promotes the development of pointing system technology based on the Michelson interferometer and provides relevant technical verification for the follow-up Taiji mission.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.