SOXS (Son Of X-Shooter) is the new ESO instrument that is going to be installed on the 3.58-m New Technology Telescope at the La Silla Observatory. SOXS is a single object spectrograph offering a wide simultaneous spectral coverage from U- to H-band. Although such an instrument may have potentially a large variety of applications, the consortium designed it with a clear science case: it is going to provide the spectroscopic counterparts to the ongoing and upcoming imaging surveys, becoming one of the main follow-up instruments in the Southern hemisphere for the classification and characterization of transients. The NTT+SOXS system is specialized to observe all transients and variable sources discovered by imaging surveys with a flexible schedule maintained by the consortium, based on a remote scheduler which will interface with the observatory software infrastructure. SOXS is realized timely to be highly synergic with transients discovery machines like the Vera C. Rubin Observatory. The instrument has been integrated and tested in Italy, collecting and assembling subsystems coming from all partners spread over six countries in three continents. The first preparatory activities in Chile have been completed at the telescope. This article gives an updated status of the project before the shipping of the instrument to Chile.
The mid-infrared (IR) regime is well suited to directly detect the thermal signatures of exoplanets in our solar neighborhood. The NEAR experiment: demonstration of high-contrast imaging (HCI) capability at ten microns, can reach sub-mJy detection sensitivity in a few hours of observation time, which is sufficient to detect a few Jupiter mass planets in nearby systems. One of the big limitations for HCI in the mid-IR is thermal sky-background. In this work, we show that precipitate water vapor (PWV) is the principal contributor to thermal sky background and science PSF quality. In the presence of high PWV, the HCI performance is significantly degraded in the background limited regime.
SOXS (Son Of X-Shooter) is a single object spectrograph offering a simultaneous spectral coverage from U- to H-band, built by an international consortium for the 3.58-m ESO New Technology Telescope at the La Silla Observatory. It is designed to observe all kind of transients and variable sources discovered by different surveys with a highly flexible schedule maintained by the consortium, based on the Target of Opportunity concept. SOXS is going to be a fundamental spectroscopic partner for any kind of imaging survey, becoming one of the premier transient follow-up instruments in the Southern hemisphere. This paper gives an updated status of the project, when the instrument is in the advanced phase of integration and testing in Europe, prior to the activities in Chile.
Ground-based thermal-infrared observations have a unique scientific potential, but are also extremely challenging due to the need to accurately subtract the high thermal background. Since the established techniques of chopping and nodding need to be modified for observations with the future mid-infrared ELT imager and spectrograph (METIS), we investigate the sources of thermal background subtraction residuals. Our aim is to either remove or at least minimise the need for nodding in order to increase the observing efficiency for METIS. To this end we need to improve our knowledge about the origin of chop residuals and devise observing methods to remove them most efficiently, i.e. with the slowest possible nodding frequency. Thanks to dedicated observations with VLT/VISIR and GranTeCan/CanariCam, we have successfully traced the origin of three kinds of chopping residuals to (1) the entrance window, (2) the spiders and (3) other warm emitters in the pupil, in particular the VLT M3 mirror cell in its parking position. We conclude that, in order to keep chopping residuals stable over a long time (and therefore allow for slower nodding cycles), the pupil illumination needs to be kept constant, i.e. (imaging) observations should be performed in pupil-stabilised, rather than field-stabilised mode, with image de-rotation in the post-processing pipeline. This is now foreseen as the default observing concept for all METIS imaging modes.
SOXS (Son Of X-Shooter) is a single object spectrograph, characterized by offering a wide simultaneous spectral coverage from U- to H-band, built by an international consortium for the 3.6-m ESO New Technology Telescope at the La Silla Observatory, in the Southern part of the Chilean Atacama Desert. The consortium is focussed on a clear scientific goal: the spectrograph will observe all kind of transient and variable sources discovered by different surveys with a highly flexible schedule, updated daily, based on the Target of Opportunity concept. It will provide a key spectroscopic partner to any kind of imaging survey, becoming one of the premier transient follow-up instruments in the Southern hemisphere. SOXS will study a mixture of transients encompassing all distance scales and branches of astronomy, including fast alerts (such as gamma-ray bursts and gravitational waves), mid-term alerts (such as supernovae and X-ray transients), and fixed-time events (such as the close-by passage of a minor planet or exoplanets). It will also have the scope to observe active galactic nuclei and blazars, tidal disruption events, fast radio bursts, and more. Besides of the consortium programs on guaranteed time, the instrument is offered to the ESO community for any kind of astrophysical target. The project has passed the Final Design Review and is currently in manufacturing and integration phase. This paper describes the development status of the project.
Vortex coronagraphs have been shown to be a promising avenue for high-contrast imaging in the close-in environment of stars at thermal infrared (IR) wavelengths. They are included in the baseline design of the mid-infrared extremely large telescope imager and spectrograph. To ensure good performance of these coronagraphs, a precise control of the centering of the star image in real time is needed. We previously developed and validated the quadrant analysis of coronagraphic images for tip-tilt sensing estimator (QACITS) pointing estimator to address this issue. While this approach is not wavelength-dependent in theory, it was never implemented for mid-IR observations, which leads to specific challenges and limitations. Here, we present the design of the mid-IR vortex coronagraph for the “new Earths in the α Cen Region (NEAR) experiment with the Very Large Telescope (VLT)/Very Large Telescope imager and spectrometer for the mid-infrared (VISIR) instrument and assess the performance of the QACITS estimator for the centering control of the star image onto the vortex coronagraph. We use simulated data and on-sky data obtained with VLT/VISIR, which was recently upgraded for observations assisted by adaptive optics in the context of the NEAR experiment. We demonstrate that the QACITS-based correction loop is able to control the centering of the star image onto the NEAR vortex coronagraph with a stability down to 0.015 λ / D rms over 4 h in good conditions. These results show that QACITS is a robust approach for precisely controlling in real time the centering of vortex coronagraphs for mid-IR observations.
Since its first light at the VLT in 2012, the Annular Groove Phase Mask (AGPM) has been used to implement vortex coronagraphy into AO-assisted infrared cameras at two additional world-leading observatories: the Keck Observatory and the LBT. In this paper, we review the status of these endeavors, and briefly highlight the main scientific results obtained so far. We explore the performance of the AGPM vortex coronagraph as a function of instrumental constraints, and identify the main limitations to the sensitivity to faint, off-axis companions in high-contrast imaging. These limitations include the AGPM itself, non-common path aberrations, as well as the data processing pipeline; we briefly describe our on-going efforts to further improve these various aspects. Based on the lessons learned from the first five years of on-sky exploitation of the AGPM, we are now preparing its implementation in a new generation of high-contrast imaging instruments. We detail the specificities of these instruments, and how they will enable the full potential of vortex coronagraphy to be unleashed in the future. In particular, we explain how the AGPM will be used to hunt for planets in the habitable zone of alpha Centauri A and B with a refurbished, AO-assisted version of the VISIR mid-infrared camera at the VLT (aka the NEAR project), and how this project paves the way towards mid-infrared coronagraphy on the ELT with the METIS instrument. We also discuss future LM-band applications of the AGPM with VLT/ERIS, ELT/METIS, and with a proposed upgrade of Keck/NIRC2, as well as future applications at shorter wavelengths, such as a possible upgrade of VLT/SPHERE with a K-band AGPM.
SOXS (Son Of X-Shooter) will be a spectrograph for the ESO NTT telescope capable to cover the optical and NIR bands, based on the heritage of the X-Shooter at the ESO-VLT. SOXS will be built and run by an international consortium, carrying out rapid and longer term Target of Opportunity requests on a variety of astronomical objects. SOXS will observe all kind of transient and variable sources from different surveys. These will be a mixture of fast alerts (e.g. gamma-ray bursts, gravitational waves, neutrino events), mid-term alerts (e.g. supernovae, X-ray transients), fixed time events (e.g. close-by passage of minor bodies). While the focus is on transients and variables, still there is a wide range of other astrophysical targets and science topics that will benefit from SOXS. The design foresees a spectrograph with a Resolution-Slit product ≈ 4500, capable of simultaneously observing over the entire band the complete spectral range from the U- to the H-band. The limiting magnitude of R~20 (1 hr at S/N~10) is suited to study transients identified from on-going imaging surveys. Light imaging capabilities in the optical band (grizy) are also envisaged to allow for multi-band photometry of the faintest transients. This paper outlines the status of the project, now in Final Design Phase.
By adding a dedicated coronagraph, ESO in collaboration with the Breakthrough Initiatives, modifies the Very Large Telescope mid-IR imager (VISIR) to further boost the high dynamic range imaging capability this instru- ment has. After the VISIR upgrade in 2012, where coronagraphic masks were first added to VISIR, it became evident that coronagraphy at a ground-based 8m-class telescope critically needs adaptive optics, even at wavelengths as long as 10μm. For VISIR, a work-horse observatory facility instrument in normal operations, this is ”easiest” achieved by bringing VISIR as a visiting instrument to the ESO-VLT-UT4 having an adaptive M2. This “visit” enables a meaningful search for Earth-like planets in the habitable zone around both α-Cen1,2. Meaningful here means, achieving a contrast of ≈ 10-6 within ≈ 0.8arcsec from the star while maintaining basically the normal sensitivity of VISIR. This should allow to detect a planet twice the diameter of Earth. Key components will be a diffractive coronagraphic mask, the annular groove phase mask (AGPM), optimized for the most sensitive spectral band-pass in the N-band, complemented by a sophisticated apodizer at the level of the Lyot stop. For VISIR noise filtering based on fast chopping is required. A novel internal chopper system will be integrated into the cryostat. This chopper is based on the standard technique from early radio astronomy, conceived by the microwave pioneer Robert Dicke in 1946, which was instrumental for the discovery of the 3K radio background.
Since 1st light in 2002, HARPS has been setting the standard in the exo-planet detection by radial velocity (RV) measurements[1]. Based on this experience, our consortium is developing a high accuracy near-infrared RV spectrograph covering YJH bands to detect and characterize low-mass planets in the habitable zone of M dwarfs. It will allow RV measurements at the 1-m/s level and will look for habitable planets around M- type stars by following up the candidates found by the upcoming space missions TESS, CHEOPS and later PLATO. NIRPS and HARPS, working simultaneously on the ESO 3.6m are bound to become a single powerful high-resolution, high-fidelity spectrograph covering from 0.4 to 1.8 micron. NIRPS will complement HARPS in validating earth-like planets found around G and K-type stars whose signal is at the same order of magnitude than the stellar noise. Because at equal resolving power the overall dimensions of a spectrograph vary linearly with the input beam étendue, spectrograph designed for seeing-limited observations are large and expensive. NIRPS will use a high order adaptive optics system to couple the starlight into a fiber corresponding to 0.4” on the sky as efficiently or better than HARPS or ESPRESSO couple the light 0.9” fiber. This allows the spectrograph to be very compact, more thermally stable and less costly. Using a custom tan(θ)=4 dispersion grating in combination with a start-of-the-art Hawaii4RG detector makes NIRPS very efficient with complete coverage of the YJH bands at 110’000 resolution. NIRPS works in a regime that is in-between the usual multi-mode (MM) where 1000’s of modes propagates in the fiber and the single mode well suited for perfect optical systems. This regime called few-modes regime is prone to modal noise- Results from a significant R and D effort made to characterize and circumvent the modal noise show that this contribution to the performance budget shall not preclude the RV performance to be achieved.
We present an overview of the VISIR instrument after its upgrade and return to science operations. VISIR is the midinfrared imager and spectrograph at ESO’s VLT. The project team is comprised of ESO staff and members of the original VISIR consortium: CEA Saclay and ASTRON. The project plan was based on input from the ESO user community with the goal of enhancing the scientific performance and efficiency of VISIR by a combination of measures: installation of improved hardware, optimization of instrument operations and software support. The cornerstone of the upgrade is the 1k by 1k Si:As AQUARIUS detector array manufactured by Raytheon. In addition, a new prism spectroscopic mode covers the whole N-band in a single observation. Finally, new scientific capabilities for high resolution and high-contrast imaging are offered by sub-aperture mask and coronagraphic modes. In order to make optimal use of favourable atmospheric conditions, a water vapour monitor has been deployed on Paranal, allowing for real-time decisions and the introduction of a user-defined constraint on water vapour. During the commissioning in 2012, it was found that the on-sky sensitivity of the AQUARIUS detector was significantly below expectations. Extensive testing of the detector arrays in the laboratory and on-sky enabled us to diagnose the cause for the shortcoming of the detector as excess low frequency noise. It is inherent to the design chosen for this detector and cannot be remedied by changing the detector set-up. Since this is a form of correlated noise, its impact can be limited by modulating the scene recorded by the detector. After careful analysis, we have implemented fast (up to 4 Hz) chopping with field stabilization using the secondary mirror of the VLT. During commissioning, the upgraded VISIR has been confirmed to be more sensitive than the old instrument, and in particular for low-resolution spectroscopy in the N-band, a gain of a factor 6 is realized in observing efficiency. After overcoming several additional technical problems, VISIR is back in Science Operations since April 2015. In addition an upgrade of the IT infrastructure related to VISIR has been conducted in order to support burst-mode operations. Science Verification of the new modes was performed in Feb 2016. The upgraded VISIR is a powerful instrument providing close to background limited performance for diffraction-limited observations at an 8-m telescope. It offers synergies with facilities such as ALMA, JWST, VLTI and SOFIA, while a wealth of targets is available from survey works like WISE. In addition, it will bring confirmation of the technical readiness and scientific value of several aspects for future mid-IR instrumentation at Extremely Large Telescopes. We also present several lessons learned during the project.
A comparison of the FWHM of standard stars observed with VISIR, the mid-IR imager and spectrometer at ESO's VLT, with expectations for the achieved mid-IR Image Quality based on the optical seeing and the wavelength-dependence of atmospheric turbulence, shows that for N-band data (7{12μm), VISIR realizes an image quality about 0.1" worse than expected based on the optical seeing. This difference is large compared to the median N-band image quality of 0.3-0.4" achieved by VISIR. We also note that other mid-IR groundbased imagers show similar image quality in the N-band. We attribute this difference to an under-estimate of the effect of the atmosphere in the mid-IR in the parameters adopted so far for the extrapolation of optical to mid-IR seeing. Adopting an average outer length-scale of the atmospheric turbulence above Paranal L0 = 46 m (instead of the previously used L0 = 23 m) improves the agreement between predicted and achieved image quality in the mid-IR while only having a modest effect on the predicted image quality at shorter wavelengths (although a significant amount of scatter remains, suggesting that l0 may not be constant in time). We therefore advocate adopting L0 = 46 m for the average outer length scale of atmospheric turbulence above Cerro Paranal for real-time scheduling of observations on VLT UT3 (Melipal).
CRIRES at the VLT is one of the few adaptive optics enabled instruments that offer a resolving power of 105 from 1 − 5 μm. An instrument upgrade (CRIRES+) is proposed to implement cross-dispersion capabilities, spectro-polarimetry modes, a new detector mosaic, and a new gas absorption cell. CRIRES+ will boost the simultaneous wavelength coverage of the current instrument (~ γ/70 in a single-order) by a factor of 10 in the cross-dispersed configuration, while still retaining a ~> 10 arcsec slit suitable for long-slit spectroscopy. CRIRES+ dramatically enhances the instrument’s observing efficiency, and opens new scientific opportunities. These include high-precision radial-velocity studies on the 3 m/s level to characterize extra-solar planets and their athmospheres, which demand for specialized, highly accurate wavelength calibration techniques. In this paper, we present a newly developed absorption gas-cell to enable high-precision wavelength calibration for CRIRES+. We also discuss the strategies and developments to cover the full operational spectral range (1 − 5 μµm), employing cathode emission lamps, Fabry-Perot etalons, and absorption gas-cells.
We present an overview of the VISIR upgrade project. VISIR is the mid-infrared imager and spectrograph at ESO’s
VLT. The project team is comprised of ESO staff and members of the original VISIR consortium: CEA Saclay and
ASTRON. The project plan is based on input from the ESO user community with the goal of enhancing the scientific
performance and efficiency of VISIR by a combination of measures: installation of improved hardware, optimization of
instrument operations and software support. The cornerstone of the upgrade is the 1k by 1k Si:As AQUARIUS detector
array (Raytheon) which has been carefully characterized in ESO’s IR detector test facility (modified TIMMI 2
instrument). A prism spectroscopic mode will cover the N-band in a single observation. New scientific capabilities for
high resolution and high-contrast imaging will be offered by sub-aperture mask (SAM) and phase-mask coronagraphic
(4QPM/AGPM) modes. In order to make optimal use of favourable atmospheric conditions a water vapour monitor has
been deployed on Paranal, allowing for real-time decisions and the introduction of a user-defined constraint on water
vapour. During the commissioning in 2012 it was found that the on-sky sensitivity of the AQUARIUS detector was
significantly below expectations and that VISIR was not ready to go back to science operations. Extensive testing of the
detector arrays in the laboratory and on-sky enabled us to diagnose the cause for the shortcoming of the detector as
excess low frequency noise (ELFN). It is inherent to the design chosen for this detector and can’t be remedied by
changing the detector set-up. Since this is a form of correlated noise its impact can be limited by modulating the scene
recorded by the detector. We have studied several mitigation options and found that faster chopping using the secondary
mirror (M2) of the VLT offers the most promising way forward. Faster M2 chopping has been tested and is scheduled
for implementation before the end of 2014 after which we plan to re-commission VISIR. In addition an upgrade of the IT
infrastructure related to VISIR is planned in order to support burst-mode operations. The upgraded VISIR will be a
powerful instrument providing close to background limited performance for diffraction-limited observations at an 8-m
telescope. It will offer synergy with facilities such as ALMA, JWST, VLTI and SOFIA, while a wealth of targets is
available from survey work (e.g. VISTA, WISE). In addition it will bring confirmation of the technical readiness and
scientific value of several aspects of potential mid-IR instrumentation at Extremely Large Telescopes.
The CRIRES infrared spectrograph at the European Southern Observatory (ESO) Very Large Telescope (VLT)
facility will soon receive an upgrade. This upgrade will include the addition of a module for performing highresolution
spectropolarimetry. The polarimetry module will incorporate a novel infrared beamsplitter based on
polarization gratings (PGs). The beamsplitter produces a pair of infrared output beams, with opposite circular
polarizations, which are then fed into the spectrograph. Visible light passes through the module virtually
unaltered and is then available for use by the CRIRES adaptive optics system. We present the design of the
polarimetry module and measurements of PG behavior in the 1 to 2.7 μm wavelength range.
CRIRES, the ESO high resolution infrared spectrometer, is a unique instrument which allows astronomers to access a
parameter space which up to now was largely uncharted. In its current setup, it consists of a single-order spectrograph
providing long-slit, single-order spectroscopy with resolving power up to R=100,000 over a quite narrow spectral range.
This has resulted in sub-optimal efficiency and use of telescope time for all the scientific programs requiring broad
spectral coverage of compact objects (e.g. chemical abundances of stars and intergalactic medium, search and
characterization of extra-solar planets). To overcome these limitations, a consortium was set-up for upgrading CRIRES
to a cross-dispersed spectrometer, called CRIRES+. This paper presents the updated optical design of the cross-dispersion
module for CRIRES+. This new module can be mounted in place of the current pre-disperser unit. The new
system yields a factor of >10 increase in simultaneous spectral coverage and maintains a quite long slit (10”), ideal for
observations of extended sources and for precise sky-background subtraction.
High-resolution infrared spectroscopy plays an important role in astrophysics from the search for exoplanets to
cosmology. Yet, many existing infrared spectrographs are limited by a rather small simultaneous wavelength coverage.
The AO assisted CRIRES instrument, installed at the ESO VLT on Paranal, is one of the few IR (0.92-5.2 μm) highresolution
spectrographs in operation since 2006. However it has a limitation that hampers its efficient use: the
wavelength range covered in a single exposure is limited to ~15 nanometers. The CRIRES Upgrade project (CRIRES+)
will transform CRIRES into a cross-dispersed spectrograph and will also add new capabilities. By introducing crossdispersion
elements the simultaneously covered wavelength range will be increased by at least a factor of 10 with respect
to the present configuration, while the operational wavelength range will be preserved. For advanced wavelength
calibration, new custom made absorption gas cells and etalons will be added. A spectro-polarimetric unit will allow one
for the first time to record circularly polarized spectra at the highest spectral resolution. This will be all supported by a
new data reduction software which will allow the community to take full advantage of the new capabilities of CRIRES+.
We present plans for instrumentation on the European Extremely Large Telescope. ESO is working with its community
of astronomers and instrument builders to develop the E-ELT Instrumentation Roadmap. The roadmap is a timeline of
the steps towards the full instrument programme, from specification of the scientific requirements, via a technology
development phase, to selection of the instrument concepts. Key goals are to be flexibile to new ideas and to ensure the
timely, on-budget delivery of instruments that meet the community's scientific needs. The result is an exciting
programme of seven instruments planned over the first decade of the telescope construction phase.
We present an overview of the VISIR upgrade project. VISIR is the mid-infrared imager and spectrograph at ESO’s
VLT. The project team is comprised of ESO staff and members of the original VISIR consortium: CEA Saclay and
ASTRON. The project plan is based on input from the ESO user community with the goal of enhancing the scientific
performance and efficiency of VISIR by a combination of measures: installation of improved hardware, optimization of
instrument operations and software support. The cornerstone of the upgrade is the 1k by 1k Si:As Aquarius detector
array (Raytheon) which has demonstrated very good performance (sensitivity, stability) in the laboratory IR detector test
facility (modified TIMMI 2 instrument). A prism spectroscopic mode will cover the N-band in a single observation. New
scientific capabilities for high resolution and high-contrast imaging will be offered by sub-aperture mask (SAM) and
phase-mask coronagraphic (4QPM/AGPM) modes. In order to make optimal use of favourable atmospheric conditions a
water vapour monitor has been deployed on Paranal, allowing for real-time decisions and the introduction of a userdefined
constraint on water vapour. Improved pipelines based on the ESO Reflex concept will provide better support to
astronomers. The upgraded VISIR will be a powerful instrument providing background limited performance for
diffraction-limited observations at an 8-m telescope. It will offer synergy with facilities such as ALMA, JWST, VLTI
and SOFIA, while a wealth of targets is available from survey work (e.g. VISTA, WISE). In addition it will bring
confirmation of the technical readiness and scientific value of several aspects of potential mid-IR instrumentation at
Extremely Large Telescopes. The intervention on VISIR and installation of hardware has been completed in July and
commissioning will take place during July and August. VISIR is scheduled to be available to the users starting Oct 2012.
We present work done to prepare two new near-infrared calibration sources for use on high-precision astrophysical
spectrographs. Uranium-neon is an atomic calibration source, commercially available as a hollow-cathode lamp,
with over 10 000 known emission lines between 0.85 and 4 μm. Four gas cells — containing C2H2, H13CN, 12CO, and 13CO, respectively—are available as National Institute of Standards and Technology (nist) Standard Reference Materials (SRMs), and provide narrow absorption lines between 1.5 and 1.65 μm. These calibration sources may prove useful for wavelength-calibrating the future near-infrared high-precision radial-velocity spectrometers, including the Calar Alto high-Resolution search for M dwarfs with Exo-earths with a Near-infrared Echelle Spectrograph (CARMENES),1 the SpectroPolarimetre InfraROUge (SPIRou)∗, and the Habitable-Zone Planet Finder (HPF).2
The cryogenic high resolution IR echelle spectrograph CRIRES is the ESO infrared (0.95−5.4 μm) high
resolution spectrograph operating at the Nasmyth A focus of VLT-UT1. The instrument provides long-slit
(31") spectroscopy with resolving power up to R=100,000 over a quite narrow wavelengths range, about 1/70 of
the central wavelength. Observations of compact objects (e.g. stellar photospheres) could be made much more
efficient by implementing a cross-dispersed mode, which increases the simultaneous spectral coverage by an order
of magnitude or more.
This paper presents the design of a relatively simple system to add cross-dispersed modes to CRIRES with a
minimum impact on the instrument optics and mechanics.
The ESO's VLT Spectrometer and Imager for the Mid-Infrared (VISIR) has been in operation at the Paranal
Observatory since 2005. It is equipped with two DRS (formerly Boeing) 256 × 256 BIB arrays. The project to
replace detectors into new Raytheon, 1k × 1k AQUARIUS devices as well as to modify observing modes, software,
etc. is underway. The VISIR upgrade creates a well defined break point in the instruments' characteristics. For
nearly 7 years of the VISIR operations we have been collecting and processing calibration data, in particular
observations of the imaging and spectroscopic standard stars, within a regular data flow operation scheme. The
derived quality control parameters have been systematically written into a database, which allows the analysis
of their temporal behavior. We present an overview of the long term variations of the VISIR quality control
parameters: sensitivity, conversion factor and mean background level estimations. The results will be later used
to compare performance of VISIR before and after the upgrade.
The European Southern Observatory (ESO) is preparing to upgrade VISIR, the mid-IR imager and spectrograph at the
VLT. The project team is comprised of ESO staff and members of the original consortium that built VISIR: CEA Saclay
and ASTRON. The goal is to enhance the scientific performance of VISIR and to facilitate its use by the ESO
community. In order to capture the needs of the user community, we collected input from the users by means of a webbased
questionnaire. In line with the results of the internal study and the input from the user community, the upgrade
plan calls for a combination measures: installation of improved hardware, optimization of instrument operations and
software support. The limitations of the current detector (sensitivity, cosmetics, artifacts) have been known for some
time and a new 1k x 1k Si:As Aquarius array (Raytheon) will be the cornerstone of the VISIR upgrade project. A
modified spectroscopic mode will allow covering the N-band in a single observation. Several new scientific modes (e.g.,
polarimetry, coronagraphy) will be implemented on a best effort basis. In addition, the VISIR operational scheme will be
enhanced to ensure that optimal use of the observing conditions will be made. Specifically, we plan to provide a means
to monitor precipitable water vapour (PWV) and enable the user to specify it as a constraint set for service mode
observations. In some regions of the mid-IR domain, the amount of PWV has a fundamental effect on the quality of a
given night for mid-IR astronomy. The plan also calls for full support by ESO pipelines that will deliver science-ready
data products. Hence the resulting files will provide physical units and error information and all instrumental signatures
will have been removed. An upgraded VISIR will be a powerful instrument providing diffraction-limited performance at
an 8-m telescope. Its improved performance and efficiency as well as new science capabilities will serve the needs of the
ESO community but will also offer synergy with various other facilities such as ALMA, JWST, VLTI and SOFIA. A
wealth of targets for detailed study will be available from survey work done by VISTA and WISE. Finally, the upgraded
VISIR will also serve as a pathfinder for potential mid-IR instrumentation at the European Extremely Large Telescope
(E-ELT) in terms of technology as well as operations.
METIS is a mid-infrared instrument proposed for the European Extremely Large Telescope (E-ELT). It is designed to
provide imaging and spectroscopic capabilities in the 3μm to 14μm region up to a spectral resolution of 100.000. Here
the technical concept of METIS is described which has been developed based on an elaborated science case which is
presented elsewhere in this conference.
There are five main opto-mechanical modules all integrated into a common cryostat: The fore-optics is re-imaging the
telescope focal plane into the cryostat, including a chopper, an optical de-rotator and an un-dispersed pupil stop. The
imager module provides diffraction limited direct imaging, low-resolution grism spectroscopy, polarimetry and
coronagraphy. The high resolution IFU spectrograph offers a spectral resolution of 100.000 for L- and M-band and
optional 50.000 for the N-band. In addition to the WFS integrated into the E-ELT, there is a METIS internal on-axis
WFS operating at visual wavelengths. Finally, a cold (and an external warm) calibration unit is providing all kinds of
spatial and spectral calibrations capabilities. METIS is planned to be used at one of the direct Nasmyth foci available at
the E-ELT.
This recently finished Phase-A study carried out within the framework of the ESO sponsored E-ELT instrumentation
studies has been performed by an international consortium with institutes from Germany, Netherlands, France, United
Kingdom and Belgium.
METIS is the 'Mid-infrared ELT Imager and Spectrograph', the only planned thermal/mid-IR instrument for the E-ELT.
METIS will provide diffraction limited imaging in the atmospheric L/M and N-band from 3 - 14 μm over an 18"×18"
field of view (FOV). The imager also includes high contrast coronagraphy and low-resolution (900 ≤ R ≤ 5000) long slit
spectroscopy and polarimetry. In addition, an IFU fed, high resolution spectrograph at L/M band will provide a spectral
resolution of R ~ 100,000 over a 0.4"×1.5" FOV. The adaptive optics (AO) system is relatively simple, and METIS can
reach its full performance with the adaptive correction provided by the telescope - and occasionally even under seeing
limited conditions. On a 42m ELT, METIS will provide state-of-the-art mid-IR performance from the ground. The
science case for METIS is based on proto-planetary disks, characterization of exoplanets, formation of our Solar System,
growth of supermassive black holes, and the dynamics of high-z galaxies. With the focus on highest angular resolution
and highest spectral resolution, METIS is highly complementary to JWST and ALMA. This paper summarizes the
science case for METIS, and describes the instrument concept, performance and operational aspects.
In this paper we present a brief status report on the conceptual designs of the instruments and adaptive optics modules
that have been studied for the European Extremely Large Telescope (E-ELT). In parallel with the design study for the
42-m telescope, ESO launched 8 studies devoted to the proposed instruments and 2 for post-focal adaptive optics
systems. The studies were carried out in consortia of ESO member state institutes or, in two cases, by ESO in
collaboration with external institutes. All studies have now been successfully completed. The result is a powerful set of
facility instruments which promise to deliver the scientific goals of the telescope.
The aims of the individual studies were broad: to explore the scientific capabilities required to meet the E-ELT science
goals, to examine the technical feasibility of the instrument, to understand the requirements placed on the telescope
design and to develop a delivery plan. From the perspective of the observatory, these are key inputs to the development
of the proposal for the first generation E-ELT instrument suite along with the highest priority science goals and
budgetary and technical constraints. We discuss the lessons learned and some of the key results of the process.
CRIRES is a cryogenic, pre-dispersed, infrared Echelle spectrograph designed to provide a nominal resolving
power ν/Δν of 105 between 1000 and 5000 nm for a nominal slit width of 0.2". The CRIRES installation at
the Nasmyth focus A of the 8-m VLT UT1 (Antu) marks the completion of the original instrumentation plan
for the VLT. A curvature sensing adaptive optics system feed is used to minimize slit losses and to provide 0.2"
spatial resolution along the slit. A mosaic of four Aladdin InSb-arrays packaged on custom-fabricated ceramic
boards has been developed. It provides for an effective 4096 × 512 pixel focal plane array to maximize the free
spectral range covered in each exposure. Insertion of gas cells is possible in order to measure radial velocities with
high precision. Measurement of circular and linear polarization in Zeeman sensitive lines for magnetic Doppler
imaging is foreseen but not yet fully implemented. A cryogenic Wollaston prism on a kinematic mount is already
incorporated. The retarder devices will be located close to the Unit Telescope focal plane. Here we briefly recall
the major design features of CRIRES and describe the commissioning of the instrument including a report of
extensive testing and a preview of astronomical results.
The European Southern Observatory (ESO) is conducting a phase B study of a European Extremely Large Telescope (E-ELT).
The baseline concept foresees a 42m primary, 5 mirror adaptive telescope with two of the mirrors giving the
possibility of very fast correction of the atmospheric turbulence. In parallel to the telescope study, ESO is coordinating
8 studies of instruments and 2 of post-focus Adaptive Optics systems, carried out in collaboration with Institutes in the
member states. Scope of the studies, to be completed by 1Q 2010, is to demonstrate that the high priority scientific goals of
the E-ELT project can be achieved with feasible and affordable instruments. The main observing modes being considered
are: NIR wide field imaging and spectroscopy to the diffraction limit or with partial correction of the atmospheric seeing;
high spectral resolution, high stability visible spectroscopy; high contrast, diffraction limited imaging and spectroscopy; DL
mid-infrared imaging and spectroscopy. The status of the 8 current studies is presented.
The ESO's VISIR instrument at Paranal is dedicated to observations in two mid-infrared (MIR) atmospheric
windows: N-band (8-13 micron) and Q-band (16.5-24.5 micron). It is equipped with two DRS (formerly Boeing)
256 × 256 BIB detectors operating at temperatures of about 5 K. As in case of other Paranal instruments
VISIR data are regularly transferred to ESO Garching within the standard data flow operation. There, they are
classified and pipeline-processed. The products of VISIR technical data are analyzed in order to trend instrument
performance, while calibrations and science data are checked for quality and later distributed to the users. Over
the three years of VISIR operations we have been constantly gaining more experience in methods of assessing
health of the instrument. In particular, we found that dark frames are particularly useful for monitoring the
VISIR detectors. We also discuss performance of the "OCLI" silicate filters recently mounted in the instrument.
VISIR is the VLT mid-infrared (mid-IR) Imager and Spectrometer. Since 2004, it provides data at high spatial
and spectral resolutions in the N (8-13 μm) and Q (16-24 μm) atmospheric windows. VISIR observations have
provided unique constraints on targets such as central regions of nearby galaxies, or protoplanetary disks. We
review here VISIR Imager and Spectrometer characteristics, emphasizing on some current limitations because
of various undesirable effects. Its successor on an ELT will provide data with a unique sharpness (0.05") and
sensitivity (35 μJy source detectable in 1 hour at 10 σ level), thus allowing a characterization of exoplanetary
disks and inner exoplanets with an unprecedent precision. At the light of VISIR experience, we discuss how
the lessons learned from VISIR can be turned to good account for designing and operating the future mid-IR
instrument on the European ELT.
Imaging- and spectropolarimetry in the thermal infrared (~ 5-30 μm) can inform us about two important open
questions in modern astrophysics - namely the role of magnetism in the formation of stars, and the life-cycle
of cosmic dust. These are key questions outlined in the document "A Science Vision for European Astronomy"
by de Zeeuw & Molster (2007). Thermal IR polarimetry is the only technique that can peer into the heart of
star forming cores, where an infant star heats its immediate surroundings to temperatures of several hundred
Kelvin. The polarization itself is induced by a preferential alignment of the spin axis of cosmic dust grains, a
process ultimately controlled by the ambient magnetic field. The spectrum is sensitively dependent on the grain
optical properties, structure and shape, thus providing information not otherwise obtainable by conventional
spectroscopy. The MIRI instrument on the JWST will not have a polarimetry mode, thus leaving open the
possibility of an ELT mid-IR instrument being able to make substantial progress on these fundamental issues.
Before describing the advantages of a mid-IR spectropolarimeter on an ELT, we first present some preliminary
results from our polarization observations with the TIMMI2 mid-IR instrument between 2004 and 2006. The
experience gained with TIMMI2 - in terms of technical issues and observing strategy - will inform the design of
any future instrument. Following this we will describe the science that could be done with an ELT instrument,
and some of the basic design parameters. For instance, with a resolution of ~ 70 milli-arcseconds (FWHM at
10 μm) it will become possible to resolve the magnetic field configuration in the circumstellar disks and bipolar
outflows of young stars at a spatial scale of less than 10 AU in the nearest star formation regions. This will
strongly constrain hydromagnetic models - the favoured means of extracting angular momentum and allowing
accretion to proceed - for bipolar jets emanating from a range of compact astrophysical objects. Further, with
a resolving power of order 200, and sensitivity of 100σ in 1 hour integration on a 0.5 mJy point source, the
evolution of cosmic dust - and the governing physical and chemical processes - from its formation in old stellar
outflows to its deposition in planet-forming disks, will become amenable to detailed polarization studies.
METIS, the Mid-infrared ELT Imager and Spectrograph (formerly called MIDIR), is a proposed instrument for the
European Extremely Large Telescope (E-ELT), currently undergoing a phase-A study. The study is carried out within
the framework of the ESO-sponsored E-ELT instrumentation studies. METIS will be designed to cover the E-ELT
science needs at wavelengths longward of 3μm, where the thermal background requires different operating schemes. In
this paper we discuss the main science drivers from which the instrument baseline has been derived. Specific emphasis
has been given to observations that require very high spatial and spectral resolution, which can only be achieved with a
ground-based ELT. We also discuss the challenging aspects of background suppression techniques, adaptive optics in
the mid-IR, and telescope site considerations. The METIS instrument baseline includes imaging and spectroscopy at the
atmospheric L, M, and N bands with a possible extension to Q band imaging. Both coronagraphy and polarimetry are
also being considered. However, we note that the concept is still not yet fully consolidated. The METIS studies are
being performed by an international consortium with institutes from the Netherlands, Germany, France, United
Kingdom, and Belgium.
KEYWORDS: Telescopes, Adaptive optics, Mid-IR, James Webb Space Telescope, Space telescopes, Stars, Imaging systems, Large telescopes, Spectrographs, Optical instrument design
MIDIR is the proposed thermal/mid-IR imager and spectrograph for the European Extremely Large Telescope
(E-ELT). It will cover the wavelength range of 3 to at least 20 μm. Designed for diffraction-limited performance
over the entire wavelength range, MIDIR will require an adaptive optics system; a cryogenically cooled system
could offer optimal performance in the IR, and this is a critical aspect of the instrument design. We present
here an overview of the project, including a discussion of MIDIR's science goals and a comparison with other
infrared (IR) facilities planned in the next decade; top level requirements derived from these goals are outlined.
We describe the optical and mechanical design work carried out in the context of a conceptual design study, and
discuss some important issues to emerge from this work, related to the design, operation and calibration of the
instrument. The impact of telescope optical design choices on the requirements for the MIDIR instrument is
demonstrated.
The European Southern Observatory (ESO), the Space Telescope European Co-ordinating Facility (ST-ECF),
and the US National Institute of Standards and Technology (NIST) are collaborating to study Th-Ar hollow
cathode lamps as used for the calibration of VLT (Very Large Telescope) spectrographs. In the near IR only
a limited number of wavelength standards are available. The density and distribution of lines in Ne or Kr
lamps, for example, are inadequate for high-resolution spectroscopy. Th-Ar hollow cathode lamps provide a
rich spectrum in the UV-visible region and have been used in astronomy for a long time; current examples
at ESO include the spectrographs UVES and FLAMES. The Th spectrum from 278 nm to about 1000 nm
was studied at high resolution about 20 years ago (Palmer and Engleman, 1983). Two studies of the Th-Ar
spectrum in the near IR have recently been published, but neither work is directly applicable to the calibration
of IR astronomical spectrographs at ESO. We report new measurements using the 2-m UV/visible/IR Fourier
transform spectrometer (FTS) at NIST that establish more than 2000 lines as wavelength standards in the range
900 nm to 4500 nm. This line list is used as input for a physical model that provides the wavelength calibration
for the Cryogenic High-Resolution IR Echelle Spectrometer (CRIRES), ESO's new high resolution (R~100,000)
IR spectrograph at the VLT. We also present first calibration results from laboratory testing of CRIRES. The
newly established wavelength standards will also be available for use by X-shooter and other spectrographs in the
future. Measurements of the variation of the spectrum of Th-Ar lamps as a function of operating current allow
us to optimise the spectral output in terms of relative intensity and line density for operation on the telescope.
Since Th and Ar line intensities show a different response with respect to operating current, such measurements
can be used as a diagnostic tool for distinguishing the gas and metal lines. Our findings show that Th-Ar lamps
hold the promise of becoming a standard source for wavelength calibration in near IR astronomy.
CRIRES, a first generation VLT instrument, is a cryogenic high-resolution (R~100,000) IR spectrograph operating in the range 1-5 μm. Here we present a model based wavelength calibration for CRIRES. The procedure uses a streamlined model of the CRIRES optical path that enables calculation of the location of the illumination
in the detector focal plane at sub-pixel accuracy for a given wavelength and instrumental configuration. The instrumental configuration is described in terms of the tips and tilts of optical surfaces, their optical properties and environmental conditions. These parameters are derived through the application of a minimisation algorithm that is capable of using multiple realisations of the model to find the configuration which results in the optimal match between simulated wavelength data and dedicated calibration exposures. Once the configuration is accurately determined the model can be used to provide the dispersion solution for science exposures or to produce two dimensional simulated data for a given spectral source. In addition we describe comparisons to early laboratory data and the optimisation strategy adopted.
The European Southern Observatory (ESO), the Space Telescope European Co-ordinating Facility (ST-ECF) and Goddard Space Flight Center (NASA) are collaborating to study the refractive index of ZnSe at cryogenic temperatures. The pre-disperser prism of ESO's Cryogenic high-resolution IR Echelle Spectrograph (CRIRES) for the Very Large Telescope (VLT) is made of ZnSe. CRIRES covers the wavelength range from 950 - 5000 nm at a resolution of 100,000 and is operated at about 65 K. Recent measurements at NASA GSFC's cryogenic high accuracy refraction measuring system (CHARMS) have established the index of refraction for ZnSe both as a function of wavelength and temperature. These data are being used as input for a physical model that provides the wavelength calibration for CRIRES. Here we present the latest results from CHARMS and a comparison with measurements obtained during CRIRES' laboratory testing. Our results highlight the value of high accuracy laboratory measurements of the optical properties of materials for the design and operation of astronomical instrumentation. This also illustrates the use of such data in instrument physical models for high fidelity calibration of spectrographs.
MIDIR is a combined thermal/mid-infrared imager and spectrograph for the European Extremely Large Telescope (EELT). It will operate in the infrared L, M, N, and Q-band to 20μm with a goal to extend the wavelength coverage to 27μm if the atmospheric properties of the site are sufficiently good. MIDIR will offer imaging and spectroscopic modes over a wide range in spectral resolution. MIDIR will be designed for diffraction limited performance, requiring an optimized, cryogenic adaptive optics (AO) system. The conceptual study of MIDIR is part of a suite of eight ELT instrument "small studies" partly funded by the EU [1]. The study is being performed by an international consortium of Leiden Observatory, Astron, MPIA, UK-ATC, and ESO. The high level instrument requirements for MIDIR have been directly derived from numerous important science cases. In this paper we discuss the science case for MIDIR, provide a summary of the technical specifications, discuss the requirements on the AO system, and estimate the sensitivity in various observing modes. More technical details on the instrument are given in a parallel paper at this conference [2].
A MIR instrumentation study for a European ELT has been performed by a Dutch consortium led by the Leiden Observatory (The Netherlands) and the Max-Planck-Institut fur Astronomie in Heidelberg (Germany). MIR imaging and spectroscopic observational capabilities are compared to contemporary IR to sub-millimeter facilities, especially concentrating on the MIR-capabilities of JWST(MIRI). Our best effort calculation of the sensitivity for both MIR imager and spectrograph indicate a huge discovery potential in numerous areas from our planetary system to the high redshift Universe (see [6269-75] during this conference). Here we concentrate on the technical aspects of such an instrument, offering diffraction limited direct imaging capabilities over the wavelength range from 3.5μm up to 20μm or even 27μm, as well as medium to high resolution spectroscopy for the same wavelength range. To make use of the extreme spatial resolution, the spectrograph is planned to include an integral field unit.
The adaptive optics MACAO has been implemented in 6 focii of the VLT observatory, in three different flavors. We present in this paper the results obtained during the commissioning of the last of these units, MACAO-CRIRES. CRIRES is a high-resolution spectrograph, which efficiency will be improved by a factor two at least for point-sources observations with a NGS brighter than R=15. During the commissioning, Strehl exceeding 60% have been observed with fair seeing conditions, and a general description of the performance of this curvature adaptive optics system is done.
High resolution spectroscopy made an important step ahead 10 years ago, leading for example to the discovery of numerous exoplanets. But the IR did not benefit from this improvement until very recently. CRIRES will provide a dramatic improvement in the 1-5 micron region in this field. Adaptive optics will allow us increasing both flux and angular resolution on its spectra. This paper describes the adaptive optics of CRIRES, its main limitations, its main components, the principle of its calibration with an overview of the methods used and the very first results obtained since it is installed in the laboratory.
CRIRES is a cryogenic, pre-dispersed, infrared echelle spectrograph designed to provide a resolving power lambda/(Delta lambda) of 105 between 1 and 5mu m at the Nasmyth focus B of the 8m VLT unit telescope #1 (Antu). A curvature sensing adaptive optics system feed is used to minimize slit losses and to provide diffraction limited spatial resolution along the slit. A mosaic of 4 Aladdin~III InSb-arrays packaged on custom-fabricated ceramics boards has been developed. This provides for an effective 4096x512 pixel focal plane array, to maximize the free spectral range covered in each exposure. Insertion of gas cells to measure high precision radial velocities is foreseen. For measurement of circular polarization a Fresnel rhomb in combination with a Wollaston prism for magnetic Doppler imaging is foreseen. The implementation of full spectropolarimetry is under study. This is one result of a scientific workshop held at ESO in late 2003 to refine the science-case of CRIRES. Installation at the VLT is scheduled during the first half of 2005. Here we briefly recall the major design features of CRIRES and describe its current development status including a report of laboratory testing.
For the high-resolution IR Echelle Spectrometer CRIRES (1-5 μm range), to be installed at the VLT in 2005, ESO is developing a 512 x 4096 pixels focal plane array mosaic based on Raytheon Aladdin III InSb detectors with a cutoff wavelength of 5.2 microns. To fill the useful field of 135 mm in the dispersion direction and 21 mm in the spatial direction and to maximize simultaneous spectral coverage, a mosaic solution similar to CCD mosaics has been chosen. It allows a minimum spacing between the detectors of 264 pixels. ESO developed a 3-side buttable mosaic package for both the Aladdin II and Aladdin III detectors which are mounted on multilayer co-fired AlN ceramic chip carriers. This paper presents the design of the CRIRES 512 x 4096 pixel Aladdin InSb focal plane array and a new test facility for testing mosaic focal planes under low flux conditions.
TIMMI2 ESO's 2nd generation Thermal Infrared Multimode Instrument had astronomical first light in October 2000 at the 3.6 m telescope on La Silla, Chile. Since February 2001 it is in regular use, both by visiting astronomers and in service mode, typically one third of the total telescope time. Using a Raytheon 240 x 320 pixel As:Si-BIB detector allows imaging and grism spectroscopy between 5 and 24 μm. TIMMI2 has also a linear polarimetry mode. We will give a description of the instrument from technical to operational aspects. Because of the substantial gain in sensitivity as compared to previous generation instruments a new set of infrared calibration standards has been constructed. The instrument and telescope are subject of an ongoing sensitivity monitoring program enabling to improve the sensitivity while allowing to spot the development of problems immediately. For stellar objects the sensitivity 10 σ in 1 hour of telescope time is in the range of 15 - 30 mJy. TIMMI2 at the telescope shows negligible flexure (≤ 0.2") while having basically diffraction limited performance for λ ≥ 8 μm.
CRIRES is a cryogenic, pre-dispersed, infrared echelle spectrograph designed to provide a resolving power of 105 between 1 and 5 μm at a Nasmyth focus of one of the 8m VLT telescopes. A curvature sensing adaptive optics sytem feed is used to minimize slit losses and a 4096x512 pixel mosaic of Aladdin arrays is being developed to maximixe the free spectral range covered in each order. Insertion of gas cells to measure high precision radial velocities is foreseen and the possibility of combining a Fresnel rhomb with a Wollaston prism for magnetic Doppler imaging is under study. Installation at the VLT is scheduled during the second half of 2004. Here we briefly recall the major design features of CRIRES and describe its current development status.
ESO is presently building an adaptive-optics fed Cryogenic
Infrared Echelle Spectrograph (CRIRES) for the VLT-observatory operating in the wavelength range from 1-5μm. Spectro-polarimetry with a focus on circular polarization in the infrared is particularly interesting as the ratio of Zeeman-splitting to intrinsic line widths improves linearly with wavelength. Also the contrast between absorption lines in starspots and the surrounding photosphere becomes more favourable when observing a longer wavelengths (i.e. closer to the Jeans-case). Moreover it is well known that even extremely red objects such as Brown Dwarf candidates show X-ray emission and hence must have magnetic activity. CRIRES shall be equipped with a reflective phase retarder and a Wollaston-prism allowing nearly
un-compromised measurements of circular polarization at a spectral resolution of 100000. Linear polarization measurements are also possible, but most likely with compromised performance. We show
preview spectra of Zeeman sensitive transitions in the infrared based
on Fourier-transform spectra of sunspots from literature.
ESO's Thermal Infrared Multimode Instrument, TIMMI2,in regular operation at the 3.6m telescope on La Silla, Chile,since January 2001 is equipped with a linear polarization mode which can be used in conjunction with all scientific observing modes available. A description of the polarimeter, working between 5 and 24mu m in imaging and low-resolution grism spectroscopy is given. Calibration issues and other operational aspects are described. We report first results from the final astronomical commissioning.
TIMMI2 is a focal reducer with variable magnification using a reflective collimator and various camera lenses from Silicon, CdTe, Germanium and KRS-5. The primary operating wavelength is 8-24 microns with limited access also to the 3-5 micron region. Longslit and Echelle spectroscopy up to a resolving power of 1000 are implemented with grisms. A cryogenic wire grid polarizer allows for imaging polarimetry. TIMMI2 uses a 240 X 320 As:Si detector array and is cooled by a 2 stage Gifford-McMahon cooler. Maximum field is 72 X 96 arcsec. TIMMI2 has 5 internal cryogenic functions and one external wheel holding calibration targets. TIMMI2 will be interfaced to the 3.6m telescope with a special IR adapter allowing wheel holding registration of the IR images with respect to astrometric reference frames. The instrument design, electronics and results from laboratory test will be presented. Sensitivity estimates as well as an outlook on possible astronomical programs will be given.
KEYWORDS: Telescopes, Cameras, Control systems, Calibration, Human-machine interfaces, Polarimetry, Electronics, Data processing, Image processing, Video
The new ESU Thermal Infrared Multi-Mode Instrument TIMMI2 is described in detail in Reimann et al. The TNT-Timmi Navigator Terminal is the graphical user interface for TIMMI2. It provides the communication between telescope, instrument and reduction pipeline. The TNT is a very easy way allows the astronomer to prepare and run complex observing programs. The graphical elements are based on Forms Library (A Graphical User Interface Toolkit for X). The TNT is written in C.
An overview on the use of grisms from high refractive index optical materials is given. When using grisms manufactured from silicon or germanium two IR focal-reducers of the European Southern Observatory (ESO) can serve as medium resolution echelle spectrometers. A silicon echelle grism allowing for a spectral resolution of 5000 for a 1 arcsec slit is being developed for SOFI, a near IR instrument featuring a 1024 Rockwell HgCdTe detector at ESO's 3.5m New Technology Telescope. For TIMMI2, ESO's new 10/20 micrometers instrument for the 3.6m telescope a germanium echelle grism is being built. For TIMMI a 10 micrometers camera featuring a 64 X 64 detector a low resolution germanium grism yielding a spectral resolution (lambda) /(Delta) (lambda) equals 200 for a 1 arcsec slit has already been successfully commissioned. The manufacturing process, the status and performances will be presented. Moreover we show some astronomical results.
Datasets obtained from lunar occultation in the thermal infrared with a classical direct imaging system are compared to those obtained with a two telescope interferometer. Angular resolution and sensitivity achievable with ESO's VLT- Interferometer as λ≈10 μm are roughly identical to the precision with which 1-dimensional cuts can be reconstructed from lunar occultations. Prototype results obtained at a 4m class telescope with lunar occultation only are presented. The concepts of an algorithm to reconstruct interferometric data under the constrain of compatibility with a light curve derived from a lunar occultation event is given. The improvement of image reconstruction of the combined data set relative to the single data sets is demonstrated by calculating theoretical point spread functions. The estimated 'PSF' width for this technique at λ≈10 μm is of order of 0.03 inches.
The Cassegrain focus of the 2nd unit telescope of ESO's VLT shall be equipped with a 10/20 micrometers camera spectrometer. This instrument shall be built by a consortium of institutes from ESO's member-states responsible for the final design. Still rather detailed internal studies were required to assess the overall scope of work, the repercussions on the telescope design and the required infrastructure at ESO. The internal studies have resulted in a multimode instrument allowing for diffraction limited imaging with variable magnification at 10/20 micrometers , low-, medium- plus potentially high-resolution long slit spectroscopy (approaching or exceeding (lambda) divided by (Delta) (lambda) approximately equals 50000). The optical design allows to take advantage of the rapid evolution in the field of detectors. Novel design features are an exchangeable entrance window, an anamorphic beam expansion and potentially the use of immersion gratings. At the La Silla observatory TIMMI, a small 10 micrometers camera/spectrometer for the 3.6 m telescope (built by the Service d'Astrophysique, CEN- Saclay, France) is in operation to allow both ESO and its community to gain practical experience in astronomy in the 10 micrometers atmospheric window. This instrument is currently equipped with a 64x64 element Ga:Si array. A 128x196 element array is presently in development at Leti/LIR of Grenoble, France, which may be used to upgrade ESO's current observing capabilities. Spectroscopy in TIMMI utilizes Germanium grisms machined via anisotropic etching. This manufacturing technology may also serve to fabricate immersion gratings from high index materials.
TIMMI is the ESO Infrared camera dedicated to 10 micrometers high angular resolution imaging of the austral sky. This camera, built for the European Southern Observatory (ESO) by the Service d'Astrophysique at Saclay (SAp), has been successfully commissioned during 2 observing runs at the ESO 3.6-m telescope: one in July 1992 and the other in January 1993. Based on a LIR 64*64 pixel Si:Ga/DVR detector array optimized for ground-based broad-band 10-micrometers astronomical observations, the camera, operated at a frame rate of 120 Hz, has achieved a noise equivalent flux density of 0.01 Jy min-1/2 pixel-1 (1 (sigma) ) during N2-band observations with a pixel field of view of 0.48 arcsec. Two other fields of view are available: 0.32 and 0.65 arcsec. A filter wheel allows to select between 14 broad-band and narrow-band filters covering the atmospheric window (8 - 13 micrometers ); a M filter allows observations in the 4 micrometers atmospheric window with substantial sensitivity. The instrument is now available to visiting astronomers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.