The far-field focusing properties of two dimensional photonic crystals based flat lens with rod-type honeycomb
lattice are investigated using finite difference time domain (FDTD) method. The results match the wave-beam negative
refraction law with relative refractive index of -1. But, the image qualities are limited by low transmission at large
incident angles. To improve the image qualities, the effects of interface on the far-field image in a two-dimensional
honeycomb photonic crystal are investigated. It is found that the image qualities can be improved by modifying the
radius of rod near the surface of photonic crystals slab.
One-dimensional magneto-optical (MO) photonic crystals display enhanced MO effect due to the localization of light, it can be used to fabricate small-size optical isolator with only tens of micros which can enlarge the integration of system. A transfer matrix method (TMM) that is suitable for solving the problems of the propagation of polarized light in anisotropic media at an arbitrary incidence angle, is described detailedly in this paper. Using this method, we discussed two types of reflection-mode "sandwich structure" of MOMF isolator, and found that the structure with thicker MO layer has advantages in working stability and fabrication.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.