This study focuses on using an artificial intelligence to explore metal-organic framework (MOFs) supporting the structural transformations (for instance, phase change, structural breathing, and crystal-to-crystal phase transition). Since the most MOFs possess flexible and adaptive structure, they are widely used as smart materials for optical keys, triggers, switchers, and even information encrypts. However, 100.000 potential MOFs are strongly complicated the search of specific MOF for targeted applications. Here, we report on a unique database of MOFs demonstrating the structural transformation occurring between different space groups or crystal symmetries. Using a autoencoder and classifier to predict the structural transformations, we build a link between the initial MOF structure and the potential to be switched.∗ The results pave the way to predict and design an efficient phase change MOFs for potential application in optical data processing and storage.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.