Two remote sensing techniques used to measure water vapor content in the atmosphere are presented: the Lidar/Dial technique and the GPS data analysis method. The dial method, as is well known, can be used to obtain range resolved measurements or an average concentration measurement on the long path using a target topographic method. This methodology permits measurement of the concentration of atmospheric trace gases and, in particular, water vapour profiles. The second remote sensing method is based on an application of the GPS (Global Positioning System). It enables the assessment of the signal propagation delay from satellites to ground-based receivers. Once ground temperature and atmospheric pressure are measured and the GPS signal delay is known, then an estimate of the columnar water vapour content can be performed. In this paper a comparison between the two remote sensing techniques of water vapour measurement are present.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.