Additive manufacturing (AM) requires a new paradigm for quality assurance testing. A nondestructive test setup has been integrated into an AM chamber. A pulsed laser generates Rayleigh waves that are then received by a laser interferometer. Two levels of interrogation are investigated; detection of defects using linear ultrasonic methods and tracking changes in microstructure using nonlinear ultrasonic methods. One of the challenges in AM chambers is surface roughness, which affects both light collection for reception as well as the Rayleigh wave propagation characteristics. This paper describes the laser ultrasonic system, its integration into an AM chamber, and some sample results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.