KEYWORDS: Space operations, Sensors, Equipment, Gamma radiation, Signal detection, Silicon photomultipliers, Data archive systems, Observatories, Data processing, Design
BurstCube is a 6U (10 x 20 x 30 cm) CubeSat designed to detect gamma-ray bursts (GRBs) and enable multimessenger observations, scheduled to launch in early 2024. BurstCube science is informed by the coincident detection of GRB 170817A and gravitational wave (GW) 170817, which confirmed compact binary mergers as progenitors for GRBs. Future coincident detections will also provide important context to the GW measurements - namely constraining the neutron star equation of state and testing fundamental physics, while also probing the origin of GRB prompt emission. Full sky coverage in the gamma-ray regime is needed to increase the likelihood of such measurements. Once in orbit, BurstCube will expand sky coverage while rapidly providing public alerts and localization information to the community using the Tracking and Data Relay Satellite (TDRS) and General Coordinates Network (GCN). This work will describe the current status of the mission, as well as an outline of post-launch operations, performance, and science goals.
This conference presentation was prepared for the conference on Space Telescopes and Instrumentation 2022: Ultraviolet to Gamma Ray, part of SPIE Astronomical Telescopes + Instrumentation, 2022.
BurstCube aims to expand sky coverage in order to detect, localize, and rapidly disseminate information about gamma-ray bursts (GRBs). BurstCube is a ’6U’ CubeSat with an instrument comprised of 4 Cesium Iodide (CsI) scintillators coupled to arrays of Silicon photo-multipliers (SiPMs) and will be sensitive to gamma-rays between 50 keV and 1 MeV. BurstCube will assist current observatories, such as Swift and Fermi, in the detection of GRBs as well as provide astronomical context to gravitational wave (GW) events detected by LIGO, Virgo, and KAGRA. BurstCube is currently in its development phase with a launch readiness date in early 2022.
The Advanced Energetic Pair Telescope (AdEPT) is being developed at GSFC as a future NASA MIDEX mission to
explore the medium-energy (5–200 MeV) gamma-ray range. The enabling technology for AdEPT is the Three-
Dimensional Track Imager (3-DTI), a gaseous time projection chamber. The high spatial resolution 3-D electron
tracking of 3-DTI enables AdEPT to achieve high angular resolution gamma-ray imaging via pair production and triplet
production (pair production on electrons) in the medium-energy range. The low density and high spatial resolution of 3-DTI allows the electron positron track directions to be measured before they are dominated by Coulomb scattering.
Further, the significant reduction of Coulomb scattering allows AdEPT to be the first medium-energy gamma-ray
telescope to have high gamma-ray polarization sensitivity. We review the science goals that can be addressed with a medium-energy pair telescope, how these goals drive the telescope design, and the realization of this design with AdEPT. The AdEPT telescope for a future MIDEX mission is envisioned as a 8 m3 active volume filled with argon at 2 atm. The design and performance of the 3-DTI detectors for the AdEPT telescope are described as well as the outstanding instrument challenges that need to be met for the AdEPT mission.
Progress in high-energy gamma-ray science has been dramatic since the launch of INTEGRAL, AGILE and FERMI.
These instruments, however, are not optimized for observations in the medium-energy (~0.3< Eγ < ~200 MeV) regime
where many astrophysical objects exhibit unique, transitory behavior, such as spectral breaks, bursts, and flares. We
outline some of the major science goals of a medium-energy mission. These science goals are best achieved with a
combination of two telescopes, a Compton telescope and a pair telescope, optimized to provide significant improvements
in angular resolution and sensitivity. In this paper we describe the design of the Advanced Energetic Pair Telescope
(AdEPT) based on the Three-Dimensional Track Imager (3-DTI) detector. This technology achieves excellent, mediumenergy
sensitivity, angular resolution near the kinematic limit, and gamma-ray polarization sensitivity, by high resolution
3-D electron tracking. We describe the performance of a 30×30×30 cm3 prototype of the AdEPT instrument.
The Neutron Imaging Camera (NIC) is based on the Three-dimensional Track Imager (3_DTI) technology developed at
GSFC for gamma-ray astrophysics applications. The 3-DTI, a large volume time-projection chamber, provides accurate,
~0.4 mm resolution, 3-D tracking of charged particles. The incident direction of fast neutrons, En > 0.5 MeV, are
reconstructed from the momenta and energies of the proton and triton fragments resulting from 3He(n,p)3H interactions
in the 3-DTI volume. The performance of the NIC from laboratory is presented.
We describe a gamma-ray imaging camera (GIC) for active interrogation of explosives being developed by
NASA/GSFC and NSWC/Carderock. The GIC is based on the
Three-dimensional Track Imager (3-DTI) technology
developed at GSFC for gamma-ray astrophysics. The 3-DTI, a large volume time-projection chamber, provides
accurate, ~0.4 mm resolution, 3-D tracking of charged particles. The incident direction of gamma rays, E > 6 MeV, are
reconstructed from the momenta and energies of the electron-positron pair resulting from interactions in the 3-DTI
volume. The optimization of the 3-DTI technology for this specific application and the performance of the GIC from
laboratory tests is presented.
Stephane Coutu, S. Barwick, A. Bhattacharyya, James Beatty, C. Bower, C. Chaput, G. De Nolfo, Don Ellithorpe, D. Ficenec, J. Knapp, D. Lowder, Steven McKee, Dietrich Mueller, J. Musser, S. Nutter, E. Schneider, Simon Swordy, K. Tang, Gregory Tarle, Andrew Tomasch, E. Torbet
The high-energy antimatter telescope (HEAT) instrument has been flown successfully by high-altitude balloon in 1994 and 1995, in a configuration optimized for the detection and identification of cosmic-ray electrons and positrons at energies from about 1 GeV up to 50 GeV and beyond. It consists of a two-coil superconducting magnet and a precision drift-tube tracking hodoscope, complemented with a time-of-flight system, a transition radiation detector and an electromagnetic shower counter. We review the design criteria for optimal e+/- detection and identification, and assess the instruments' performance and background rejection during its first two flights. We also review the adaptation of HEAT for measurements of high-energy cosmic- ray antiprotons and for isotopic composition studies.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.