Monitoring the formation process and occurrence state of methane in abyssal gas-liquid-hydrate coexistent system is the premise for gas hydrate research and exploitation, and the key lies in real time, synchronous and in-situ acquisition of multi state parameters, like concentration, temperature, pressure of methane. In this paper, we propose a novel multi parameter in situ methane sensor (Submarine Methane Imaging Interference Spectrometer, SMIIS) that can simultaneously measure concentration, temperature and pressure information of submarine methane. Then to evaluate SMIIS’s feasibility and performance, we build SMIIS’s simulation model and analyze its forward interferogram. The signal-to-noise ratios (SNRs) of the simulation interference fringes for the six spectral lines of methane are in the range of (3 - 618). The detection sensitivities for concentration, temperature and pressure measurements can reach to 0.5 nmol/L, 0.5 K, and 0.05 MPa, respectively. The results indicate that the preliminary design of SMIIS is feasible. After further testing and improvement, this system will have the potential to be applied to the seabed methane detection.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.