X-ray Free Electron Laser (XFEL) radiation may transform diamond into graphite. Two X-ray pulses were used; the first as pump to trigger the phase transition and the second as probe performing X-ray diffraction. The experiment was performed at the SACLA XFEL facility at the beamline 3 experimental hutch 5. The samples were polycrystalline diamond. The pump and probe photon energies were 7 and 10.5 keV, respectively, and the delay between the X-ray pulses was varied from 0 to 286 fs. To provide a range of energy densities, the X-ray focus was adjusted between 150 nm and 1 um. The (111), (220) and (311) diffraction peaks were observed. The intensity of each diffraction peak decreased with time indicating a disordering of the crystal lattice. From a Debye-Waller analysis, the root-mean-square (rms) atomic displacement perpendicular to particular lattice planes are calculated. At higher fluences, the rms atomic displacement perpendicular to the (111) planes is significantly larger than that perpendicular to the (220) or (311) planes. By accepting two successive XFEL pulses at a time delay of 33 ms, graphite (002) diffraction was observed beginning at a threshold dose of 1.7 eV/atom. The experimental results will be compared with calculations using a hybrid model based on tight-binding molecular dynamics.
XUV pulses at 26.2 nm wavelength were applied to induce graphitization of diamond through a non-thermal solid-to-solid phase transition. This process was observed within poly-crystalline diamond with a time-resolved experiment using ultrashort XUV pulses and cross correlated by ultrashort optical laser pulses. This scheme enabled for the first time the measurement of a phase transition on a timescale of ~150 fs. Excellent agreement between experiment and theoretical predictions was found, using a dedicated code that followed the non-equilibrium evolution of the irradiated diamond including all transient electronic and structural changes. These observations confirm that ultrashort XUV pulses can induce a non-thermal ultrafast solid-to-solid phase transition on a hundred femtosecond timescale.
KEYWORDS: Optical amplifiers, Crystals, Absorption, Near infrared, Nonlinear crystals, Thermal effects, High power fiber amplifiers, Finite element methods, Solids, Thermography
Laser amplifiers at high repetition rate are critical for many applications in the chemical, physical and biological sciences. A variety of laser sources from XUV to THz can be derived from Ti:Sapphire laser amplifiers at moderate to low conversion efficiencies. High repetition rate applications require NIR and IR sources based on optical parametric chirped pulse amplifier (OPCPA) to drive these sources, offsetting the conversion efficiency losses with an even higher average power beam to drive the frequency conversion processes. We use these technologies at next generation free-electron laser (FEL) facilities. The Linac Coherent Light Source (LCLS), LCLS-II upgrade, will provide sub-femtosecond and femtosecond X-ray pulses at 100 kHz, and later up to 1 MHz repetition rate. The higher repetition rate benefits pump-probe experiments for weakly scattering samples and serves a variety of experiments which require attenuation to avoid perturbation and damage of the sample by the X-ray probe. A millijoule R&D laser amplifier was developed to test experimental conditions for optical laser beam delivery at LCLS-II. The laser can be operated at two distinct wavelength ranges. At 800 nm center wavelength we use the second harmonic of an Yb:YAG amplifier system to pump an OPCPA in a BBO crystal. A second tunable version operates between 1.45-2 m center wavelength using the fundamental Yb:YAG beam to pump a KTA OPCPA with average output powers in excess of 100 W. Currently the amplifier is operated 24 hours, 7 days a week. It is based on a simple and robust design, which ensures long term stability with good output beam quality.
We present the experimental thermal study of a 88.6 W average power optical parametric chirped pulse amplifier (OPCPA) system operating at 100 kHz, delivering sub-20 fs pulses at a center wavelength of 800 nm. A 15 W pump laser at 1030 nm is used to derive the seed pulses via white-light continuum generation and to pre-amplify the seed pulses to a 1 W level. Further amplification takes place in two high power stages, that are pumped with a frequency doubled Yb:YAG InnoSlab amplifier. The system is a prototype for the future LCLS-II pump-probe laser system.
High power OPCPAs above 10 W at short-wave IR wavelengths (SWIR: 1.4 - 3 μm) may be limited because of thermal heat dissipation in the nonlinear crystals. In this work we provide up-to-date measurements of the absorption coefficients of the nonlinear crystals used at these wavelengths and simulations of the thermal effects on critical parameters. In particular, power scaling limits will be discussed.
Quasi-phase matching (QPM) can be used to increase the conversion efficiency of the high harmonic generation
(HHG) process. We observed QPM with an improved dual-gas foil target with a 1 kHz, 10 mJ, 30 fs laser
system. Phase tuning and enhancement were possible within a spectral range from 17 nm to 30 nm. Furthermore
analytical calculations and numerical simulations were carried out to distinguish QPM from other effects, such
as the influence of adjacent jets on each other or the laser gas interaction. The simulations were performed with
a 3 dimensional code to investigate the phase matching of the short and long trajectories individually over a
large spectral range.
Optical parametric chirped-pulse amplification (OPCPA) is the most promising method for providing compact, wavelength tunable, high power, femtosecond lasers. We have recently achieved a 112 W OPCPA with wavelength tunability around 800 nm and 30 fs pulse duration in burst mode (100 kHz in a 800 µs burst at 10 Hz). In this work, we discuss the various laser architectures and the critical parameters in achieving similar laser parameters but in continuous operation.
Arik Willner, Michael Schulz, Robert Riedel, Mark Yeung, Thomas Dzelzainis, Christos Kamperidis, Makis Bakarezos, Darryl Adams, Vladislav Yakovlev, Juliane Rönsch-Schulenburg, Brendan Dromey, Nektarios Papadogiannis, Michael Tatarakis, Stefan Düsterer, Siegfried Schreiber, Bart Faatz, Markus Drescher, Jörg Rossbach, Matthew Zepf, Franz Tavella
Improved performance of Free Electron Laser (FEL) light sources in terms of timing stability, pulse shape and spectral
properties of the amplified FEL pulses is of interest in many fields of science. A promising scheme is direct seeding with
High-Harmonic Generation (HHG) in a noble gas target. A Free-Electron-Laser seeded by an external XUV-source is
planned for FLASH II at DESY in Hamburg. The requirements for the XUV/soft X-ray source can be summarized as
follows: A repetition rate of at least 100 kHz in a 10 Hz burst is needed at variable wavelengths from 10 to 40 nm and
pulse energies of several nJ within single harmonics.
This application requires a laser amplifier system with exceptional parameters, mJ-level pulse energy, sub-10 fs pulse
duration at 100 kHz (1 MHz) burst repetition rate. A new OPCPA system is under development in order to meet these
requirements, and very promising results has been achieved. In parallel to this development, a new High- Harmonic
Generation concept is necessary to sustain the high average power of the driving laser system and for the need of high
conversion efficiencies. Highest conversion efficiency in High Harmonic Generation has been shown using gas-filled
capillary targets, up to now. For our application, only a free-jet target is applicable for high harmonic generation at high
repetition rate, to overcome damage threshold limitations of HHG target optics. A new multi-jet target is under
development and first tests show a good performance of this nozzle configuration.
R. Fäustlin, S. Toleikis, Th. Bornath, T. Döppner, S. Düsterer, E. Förster, C. Fortmann, S. Glenzer, S. Göde, G. Gregori, R. Irsig, T. Laarmann, H. Lee, B. Li, K.-H. Meiwes-Broer, J. Mithen, A. Przystawik, H. Redlin, R. Redmer, H. Reinholz, G. Röpke, F. Tavella, R. Thiele, J. Tiggesbäumker, I. Uschmann, U. Zastrau, Th. Tschentscher
We present collective Thomson scattering with soft x-ray free electron laser radiation as a method to track the evolution
of warm dense matter plasmas with ~200 fs time resolution. In a pump-probe scheme an 800 nm laser heats a 20 μm
hydrogen droplet to the plasma state. After a variable time delay in the order of ps the plasma is probed by an x-ray ultra
violet (XUV) pulse which scatters from the target and is recorded spectrally. Alternatively, in a self-Thomson scattering
experiment, a single XUV pulse heats the target while a portion of its photons are being scattered probing the target.
From such inelastic x-ray scattering spectra free electron temperature and density can be inferred giving insight on
relaxation time scales in plasmas as well as the equation of state. We prove the feasibility of this method in the XUV
range utilizing the free electron laser facility in Hamburg, FLASH. We recorded Thomson scattering spectra for
hydrogen plasma, both in the self-scattering and in the pump-probe mode using optical laser heating.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.