PLATO (PLAnetary Transits and Oscillations of stars)1 is the M3 class ESA mission dedicated to the discovery
and study of extrasolar planetary systems by means of planetary transits detection. PLATO Payload Camera
units are integrated and vibrated at CSL before being TVAC tested for thermal acceptance and performance
verification at 3 different test facilities (SRON, IAS and INTA). 15 of the 26 Flight Cameras were integrated,
tested and delivered to ESA for integration by the Prime between June 2023 and June 2024, with the remaining
flight units to be tested by the end of 2024. In this paper, we provide an overview of our serial testing approach,
some of the associated challenges, key performance results and an up-to-date status on the remaining planned
activities.
A STOP (Structural, Thermal, Optical and Performance) analysis has been conducted on the camera units of the PLATO space mission. The analysis is devoted to the prediction of in-orbit performance metrics that could not be otherwise verified through direct testing. The analysis presented in this paper is restricted to the so-called “static cases” which provide a snapshot of a specified thermal condition. These are intended to evaluate the camera performance over the expected operational temperature range and at zero gravity. We hereby provide a description of the model, the requirements to be tested, the simulation strategy and the performance results.
PLATO (PLAnetary Transits and Oscillations of stars) is an M3 medium-class space mission in ESA’s Cosmic Vision program devoted to detecting and studying a large number of extrasolar planetary systems. Its launch is planned for the end of 2026 from Europe’s Spaceport in French Guiana. The PLATO Payload consists of 26 wide field-of-view Cameras, each observing a specific part of the sky, associated data processing units and power supply units. The 24 Normal-Cameras will provide a very high-resolution photometric measurement of light from a large number of stars, while the other two Fast Cameras will provide the colour information and will deliver the pointing data to the AOCS (Attitude and Orbital Control System). The Cameras will be integrated into an optical bench. Each of them is composed of the Telescope Optical Unit (TOU), the Focal Plane Assembly (FPA) and the Front-End Electronics (FEE). Currently, the serial production of the Cameras has already started facing critical key points, non-conformities and challenging problems. The status of the Product Assurance activities during the serial production for which the first flight models are being delivered after the AIT phase is reported.
In the context of PLATO Camera Subsystem development, it has been decided to take advantage of MBSE methodologies using Enterprise Architect by Sparx Systems as tool. A Local SysML Camera model for PLATO mission1 has been built from different Excel spreadsheets, i.e. Verification Control Matrices, released by Subsystems. Same approach has been used for the Camera-System itself. The complete flow-down of requirements has been created in order to easily identify and monitor any impact on the design due to changes, deviations and non-compliances. The model can be updated at any time importing Excel spreadsheet while it can be used as source to export documentation needed during formal reviews, both as Word and Excel files. In addition, Model architecture and constraints have been created through Block Definition Diagram and Internal Block Diagram so that structure, interfaces as well as interaction between different items, can be easily identified and monitored at both System and Subsystem level.
The Italian National Institute for Astrophysics (INAF) groups together 16 Observatories and Institutes. Each hosts one or more laboratories and workshops, to support technological research, operations and maintenance. This results in a vast panorama of facilities, instrumentation, equipment and skills. During a recent meeting, the INAF technological community clearly expressed the need to share information in order to more easily find tools, facilities, skills, or whatever could be of interest, to increase the working efficiency and minimize dead times and costs. We addressed this need and started developing an interactive tool called MIRTA (Interactive Map for Technological Research in INAF), aimed to effectively collect and share all this information. Its use cases can be very simple, such as, for example, solving a contingent software or technical problem or finding a specific device, or more complex, such as finding a staff member with the necessary skills to collaborate in a new or existing project.
KEYWORDS: Contamination, Manufacturing, Cameras, Space operations, Picture Archiving and Communication System, Optics manufacturing, Materials processing, Telescopes, Inspection, Contamination control
The TOU is the Telescope Optical Unit for the PLATO ESA mission, consisting of the opto-mechanical unit for each of the 26 Cameras of which PLATO is composed. The TOU is currently in the manufacturing, assembly, integration and testing (MAIT) phase for the Proto Flight Model (PFM) and for Flight Models (FMs). We present the design processes as seen from the Product Assurance (PA) point of view: PA aims at monitoring the design and addresses specific issues related to, among others, materials and processes (these shall be suitable for the purpose and for the life-time of the mission), cleanliness and contamination control (to limit the loss of optical performance), safety, monitoring of qualifications/validations. PA supports the project in failure-proofing aspects to mitigate criticalities, e.g. in the elaboration of non-conformances and deviations that can arise during the design and MAIT process, and/or are highlighted during the reviews for manufacturing, test, and delivery of the related hardware. PA ensures early detection of potential problems and risks for the TOU and arranges for corrective actions that aim at improving the likelihood of success of the mission.
Launched on 2021 December 9, the Imaging X-ray Polarimetry Explorer (IXPE) is a NASA Small Explorer Mission in collaboration with the Italian Space Agency (ASI). The mission will open a new window of investigation—imaging x-ray polarimetry. The observatory features three identical telescopes, each consisting of a mirror module assembly with a polarization-sensitive imaging x-ray detector at the focus. A coilable boom, deployed on orbit, provides the necessary 4-m focal length. The observatory utilizes a three-axis-stabilized spacecraft, which provides services such as power, attitude determination and control, commanding, and telemetry to the ground. During its 2-year baseline mission, IXPE will conduct precise polarimetry for samples of multiple categories of x-ray sources, with follow-on observations of selected targets.
Scheduled to launch in late 2021 the Imaging X-ray Polarimetry Explorer (IXPE) is a Small Explorer Mission designed to open up a new window of investigation -- X-ray polarimetry. The IXPE observatory features 3 identical telescope each consisting of a mirror module assembly with a polarization-sensitive imaging x-ray detector at its focus. An extending beam, deployed on orbit provides the necessary 4 m focal length. The payload sits atop a 3-axis stabilized spacecraft which among other things provides power, attitude determination and control, commanding, and telemetry to the ground. During its 2-year baseline mission, IXPE will conduct precise polarimetry for samples of multiple categories of x-ray sources, with follow-on observations of selected targets. IXPE is a partnership between NASA and the Italian Space Agency (ASI).
IXPE (Imaging X-ray Polarimetry Explorer) is the next Nasa Small Explorer mission foreseen for the lunch in 2021. It is a partnership with the Italian Space Agency (ASI). IXPE is devoted to X-ray polarimetry in the 2-8 keV energy band. The IXPE telescope comprises three grazing incidence mirror modules coupled to three detector units hosting each one a Gas Pixel Detector (GPD) polarimeter. The GPD exploits the photoelectric effect to measure the linear polarization of the X-ray emission from astrophysical sources. A wide and accurate on ground calibration was carried out on the IXPE detector units at INAF-IAPS in Italy. A dedicated facility was set-up to calibrate the detector units with polarized and unpolarised X-rays at different energies before Instrument integration.
IXPE (Imaging X-ray Polarimetry Explorer) is a NASA SMEX in a partnership with ASI. The focal plane Detector Units (DUs) and the Detector Service Unit (DSU) were developed by the Italian research Institutes INAF-IAPS and INFN and were manufactured by OHB-I. IXPE will investigate X-ray polarimetry in the 2-8 keV energy band. The payload comprises three identical telescopes, each composed of a mirror and a detector unit with an X-ray polarimeter based on the Gas Pixel Detector (GPD). A stray-light collimator (SLC) is mounted on the top of the DU to shield the GPD from background X-rays not coming from the optics. At the bottom of the SLC, an ions-UV filter is mounted to reduce the thermal load and to prevent ions and UV from entering the DU. The ions-UV filters consist mainly of 1 um LUXFilm (based on polyimide). During on-ground calibration activities of the IXPE DUs, X-ray transparency of DU-FM ions-UV filters was measured with monochromatic X-ray at 2.7 keV and 6.4 keV at INAF-IAPS.
IXPE, the Imaging X-ray Polarimetry Explorer, is a NASA SMEX mission with an important contribution of ASI that will be launched with a Falcon 9 in 2021 and will reopen the window of X-ray polarimetry after more than 40 years. The payload features three identical telescopes each one hosting one light-weight X-ray mirror fabricated by MSFC and one detector unit with its in-orbit calibration system and the Gas Pixel Detector sensitive to imaging X-ray polarization fabricated by INAF/IAPS, INFN and OHB Italy. The focal length after boom deployment from ATK-Orbital is 4 m, while the spacecraft is being fabricated by Ball Aerospace. The sensitivity will be better than 5.5% in 300 ks for a 1E-11 erg/s/cm2 (half mCrab) in the energy band of 2-8 keV allowing for sensitive polarimetry of extended and point-like X-ray sources. The focal plane instrument is completed, calibrated and it is going to be delivered at MSFC. We will present the status of the mission at about one year from the launch.
The Imaging X-ray Polarimetry Explorer (IXPE) will add polarization to the properties (time, energy, and position) observed in x-ray astronomy. A NASA Astrophysics Small Explorer (SMEX) in partnership with the Italian Space Agency (ASI), IXPE will measure the 2–8-keV polarization of a few dozen sources during the first 2 years following its 2021 launch. The IXPE Observatory includes three identical x-ray telescopes, each comprising a 4-m-focal-length (grazingincidence) mirror module assembly (MMA) and a polarization-sensitive (imaging) detector unit (DU), separated by a deployable optical bench. The Observatory’s Spacecraft provides typical subsystems (mechanical, structural, thermal, power, electrical, telecommunications, etc.), an attitude determination and control subsystem for 3-axis stabilized pointing, and a command and data handling subsystem communicating with the science instrument and the Spacecraft subsystems.
The Imaging X-ray Polarimetry Explorer (IXPE) will expand the information space for study of cosmic sources, by adding polarization to the properties (time, energy, and position) observed in x-ray astronomy. Selected in 2017 January as a NASA Astrophysics Small Explorer (SMEX) mission, IXPE will be launched into an equatorial orbit in 2021. The IXPE observatory includes three identical x-ray telescopes, each comprising a 4-m-focal-length (grazing-incidence) mirror module assembly (MMA) and a polarization-sensitive (imaging) detector unit (DU). The optical bench separating the MMAs from the DUs is a deployable boom with a tip/tilt/rotation stage for DU-to-MMA (gang) alignment, similar to the configuration used for the NuSTAR observatory. The IXPE mission will provide scientifically meaningful measurements of the x-ray polarization of a few dozen sources in the 2-8 keV band, over the first two years of the mission. For several bright, extended x-ray sources (pulsar wind nebulae, supernova remnants, and an active-galaxy jet), IXPE observations will produce polarization maps indicating the magnetic structure of the synchrotron emitting regions. For many bright pulsating x-ray sources (isolated pulsars, accreting x-ray pulsars, and magnetars), IXPE observations will produce phase-resolved profiles of the polarization degree and position angle.
IXPE scientific payload comprises of three telescopes, each composed of a mirror and a photoelectric polarimeter based on the Gas Pixel Detector design. The three focal plane detectors, together with the unit which interfaces them to the spacecraft, are named IXPE Instrument and they will be built and calibrated in Italy; in this proceeding, we will present how IXPE Instrument will be calibrated, both on-ground and in-flight. The Instrument Calibration Equipment is being finalized at INAF-IAPS in Rome (Italy) to produce both polarized and unpolarized radiation, with a precise knowledge of direction, position, energy and polarization state of the incident beam. In flight, a set of four calibration sources based on radioactive material and mounted on a filter and calibration wheel will allow for the periodic calibration of all of the three IXPE focal plane detectors independently. A highly polarized source and an unpolarized one will be used to monitor the response to polarization; the remaining two will be used to calibrate the gain through the entire lifetime of the mission.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.