Decoherence or dephasing of the exciton is a central characteristic of a Quantum Dot (QD) that determines the minimum width of the exciton emission line and the purity of indistinguishable photon emission during exciton recombination. Here, we analyze exciton dephasing in colloidal InP/ZnSe QDs using transient four-wave mixing spectroscopy. We obtain a dephasing time of 23ps at a temperature of 5K, which agrees with the smallest linewidth of 50ueV we measure for the exciton emission of single InP/ZnSe QDs at 5K. By determining the dephasing time as a function of temperature, we find that exciton decoherence can be described as a phonon-induced, thermally activated process. The deduced activation energy of 0.32meV corresponds to the small splitting within the nearly isotropic bright exciton triplet of InP/ZnSe QDs, suggesting that the dephasing is dominated by phonon-induced scattering within the bright exciton triplet.
Individual small gold nanoparticles are imaged in 3D background-free with high contrast by four-wave-mixing interferometry inside living mouse oocytes and multicellular organs, despite the strong linear scattering background in these large samples.
We present a four-wave mixing interferometry technique recently developed by us, whereby single non-fluorescing gold nanoparticles are imaged background-free even inside highly heterogeneous cellular environments, owing to their specific nonlinear plasmonic response. The set-up enables correlative four-wave mixing/confocal fluorescence imaging, opening the prospect to study the fate of nanoparticle-biomolecule-fluorophore conjugates and their integrity inside cells. Beyond imaging, the technique features the possibility to track single particles with nanometric position localization precision in 3D from rapid single-point measurements at 1 ms acquisition time, by exploiting the optical vortex field pattern in the focal plane of a high numerical aperture objective lens. These measurements are also uniquely sensitive to the particle in-plane asymmetry and orientation. The localization precision in plane is found to be consistent with the photon shot-noise, while axially it is limited to about 3nm by the nano-positioning sample stage, with an estimated photon shot-noise limit of below 1 nm. As a proof-of- principle, the axial localization is exploited to track single gold nanoparticles of 25nm radius while diffusing across aqueous pockets in a dense agarose gel, mimicking a relevant biological environment.
Quantitative differential interference contrast (qDIC) microscopy is applied to the study of the main phase transition of dipentadecanoylphosphatidylcholine (DC15PC) supported lipid bilayers. We measure thickness changes of about 1nm occurring in the bilayer with sub-nanometre resolution and show how the presence of fluorescently labelled lipids, even at small concentrations, can broaden the phase transition.
We determine the propagation loss of GaAs photonic crystal waveguides by spectral imaging of the spontaneous emission from the embedded InAs/GaAs quantum dots. The results are compared with the loss obtained by imaging the near field of the out-of-plane radiation of the waveguide mode propagating within the light cone. From the corresponding far field, we furthermore measure the mode wavevector, from which we determine the waveguide dispersion. Additionally, we show that spectral imaging allows to determine the relative efficiencies of the couplers. Using the same experiment, and detailed photonic simulations, we have determined the beta factor and the directionality of the emission of the QDs, finding beta factors up to 99% and high directionalities.
Quantitative determination of the chemical composition of unstained samples, non-invasively, with high three- dimensional spatio-temporal resolution, will accelerate progress in cell biology. The current state of the art in bioimaging is dominated by either chemically non-specific or invasive methods. In this work, we demonstrate label-free, non-invasive quantitative volumetric imaging of human osteosarcoma cells using coherent anti-Stokes Raman scattering microscopy. A data analysis method developed in-house was applied to represent the chemical composition of the cells as volumetric three-dimensional images indicating water, proteins, DNAP (mixture of DNA and proteins), and lipids, and to determine the dry masses of the organic components with picogram resolution.
KEYWORDS: Nanoparticles, Signal detection, Gold, Multiphoton microscopy, Four wave mixing, Luminescence, Microscopes, Microscopy, Signal to noise ratio, Spatial resolution
We have developed a novel multiphoton microscopy technique not relying on (and hence not limited by) fluorescence
emission, which exploits the third-order nonlinearity called four-wave mixing of gold nanoparticles
in resonance with their surface Plasmon. The coherent, transient and resonant nature of this signal allows its
detection free from backgrounds that limit other contrast methods for gold nanoparticles. We show detection
of single 10nm gold nanoparticles with low excitation intensities, corresponding to negligible average thermal
heating. Owing to the the third-order nonlinearity we measure a transversal and axial resolution of 140nm
and 470nm respectively, better than the one-photon diffraction limit. We also show high-contrast imaging of
gold-labels down to 5nm size in Golgi structures of HepG2 cells at useful imaging speeds (10 kHz pixel rate).
Thermal dissociation of gold nanoparticles from their bonding sites when varying the excitation intensity is also
investigated.
We demonstrate frequency differential CARS (D-CARS) using femtosecond laser pulses linearly chirped by glass
elements of high group-velocity dispersion. By replicating the Pump-Stokes pair into a pulse train at twice the
laser repetition rate, and controlling the instantaneous frequency difference by glass dispersion, we adjust the
Raman frequency probed by each pair in an intrinsically stable way. The resulting CARS intensities are detected
simultaneously by a single photomultiplier as sum and difference using lock-in detection. We demonstrate
imaging of living cells with strongly suppressed non-resonant background. We also show D-CARS using a single
femtosecond laser source.
We demonstrate a novel multi-photon imaging modality based on the detection of four-wave mixing (FWM) from
colloidal nanoparticles. Four-wave mixing is a third-order signal which can be excited and detected in resonance
with the ground-state excitonic transition of CdSe/ZnS quantum dots. The coherent FWM signal is detected
interferometrically to reject incoherent backgrounds for improved image contrast compared to fluorescence methods.
We measure transversal and axial resolutions of 140nm and 590nm respectively, significantly beating the
one-photon diffraction limit. We also demonstrate optical imaging of quantum-dot-labeled Golgi structures of
HepG2 cells.
We investigate the origin of radiative recombination in (InGa)(AsN)/GaAs single quantum wells by means of continuous wave and time-resolved photoluminescence (PL) measurements. Samples with different indium and nitrogen concentration were investigated. An analysis of the whole set of data for different excitation densities and lattice temperatures, T, is reported. This analysis provides insights into radiative and non-radiative processes ruling the recombination dynamics and shows the predominant contribution of localized state emission at low T. The nature of these states is further studied by measuring the time necessary (rise time) for their population. We find that the PL rise time in (InGa)(AsN) is independent of temperature and detection energy, thus being not conclusive about the origin of the states involved in the emission processes. On the contrary, magneto-PL measurements show that the shift of the PL peak energy induced by a magnetic field, B, decreases sizably and changes its dependence on B from linear to quadratic when going from low to high temperature. This counterintuitive result shows that radiative recombination at low temperature (T<100 K) is not excitonic, contrary to previous assignments, and is due to loosely bound electron-hole pairs in which one carrier is localized by N-induced potential fluctuations and the other carrier is delocalized.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.