Malaria, caused by Plasmodium parasites, continues to be a major burden on global health. Plasmodium falciparum (P. falciparum) and Plasmodium vivax (P. vivax) pose the greatest health threat among the five malaria species. Microscopy examination is considered as the gold standard for malaria diagnosis, but it requires a significant amount of time and expertise. In particular, the automated and accurate detection of P. vivax is difficult due to the low parasitemia levels as compared to P. falciparum. In this work, we develop a rapid and robust diagnosis system for the automated detection of P. vivax parasites using a cascaded YOLO model. This system consists of a YOLOv2 model and a classifier for hardnegative mining. Results from 2567 thin blood smear images of 171 patients show the cascaded YOLO model improves the mean average precision about 8% compared to the conventional YOLOv2 model.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.