Silicon photonics based on CMOS technology is a very attractive platform to build compact, low-cost and scalable quantum photonics integrated circuits addressing the requirements of quantum key distribution protocols. We show record low propagation losses below 0.5 dB/cm and below 0.05 dB/cm for silicon and silicon nitride waveguides respectively. We will present our results on integrated components such as hybrid III-V on silicon lasers for weak coherent pulse generation, high-quality microresonators for entangled photon pair generation and we will show our recent developments on high crystalline quality NbN thin films with improved critical temperature for waveguide-integrated superconducting single photon detectors.
We experimentally demonstrate the feasibility of the use of integrated linearly uncoupled resonators, which are coupled solely through the nonlinear interaction, to selectively enhance or suppress nonlinear processes. This is exploited to selectively enhance dual-pump spontaneous four-wave mixing while suppressing the parasitic noise associated with single pump spontaneous four-wave mixing processes. A signal-to-noise ratio characterizing the generation of identical photon pairs of more than four orders of magnitude is reported, opening the way to a new class of integrated devices exploiting the unique properties of identical photon pairs in the same optical mode.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.