Deep neural networks have achieved impressive performance in problems of object detection and object category classifications. To perform efficiently though, such methods typically require a large number of training samples. Unfortunately, this requirement is highly impractical or impossible in applications such as hyperspectral classification where it is expensive and labor intensive to generate labeled data for training. A few ideas have been proposed in the literature to address this problem such as transfer learning and domain adaptation. In this work, we propose an alternative strategy to reduce the number of network parameters based on Structured Receptive Field Networks (SRFN), a class of convolutional neural networks (CNNs) where each convolutional filter is a linear combination from a predefined dictionary. To better exploit the characteristics of hyperspectral data to be learned, we choose a filter dictionary consisting of directional filters inspired by the theory of shearlets and we train a SRFN by imposing that the convolutional filters form sparse linear combinations in such dictionary. The application of our SRFN to problems of hyperspectral classification shows that this approach achieves very competitive performance as compared to conventional CNNs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.