Although human iris pattern is widely accepted as a stable biometric feature, recent research has found some evidences
on the aging effect of iris system. In order to investigate changes in iris recognition performance due to the elapsed time
between probe and gallery iris images, we examine the effect of elapsed time on iris recognition utilizing 7,628 iris
images from 46 subjects with an average of ten visits acquired over two years from a legacy database at Clarkson
University. Taken into consideration the impact of quality factors such as local contrast, illumination, blur and noise on
iris recognition performance, regression models are built with and without quality metrics to evaluate the degradation of
iris recognition performance based on time lapse factors. Our experimental results demonstrate the decrease of iris
recognition performance along with increased elapsed time based on two iris recognition system (the modified Masek
algorithm and a commercial software VeriEye SDK). These results also reveal the significance of quality factors in iris
recognition regression indicating the variability in match scores. According to the regression analysis, our study in this
paper helps provide the quantified decrease on match scores with increased elapsed time, which indicates the possibility
to implement the prediction scheme for iris recognition performance based on learning of impact on time lapse factors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.