The solution processable poly(3-hexylthiophene)(P3HT)/TiO2-nanorod hybrid material for solar cells has been
successfully demonstrated. A critical issue for using hybrid heterojunction concept is the interface properties which
affect the exciton separation efficiency and bi-carrier transport. To improve the interface properties, we replace the
insulating surfactant on TiO2 nanorod surface with a more conductive oligomer, carboxylate terminated 3-hexylthiophene (P3HT-COOH). The enhancement of exciton separation efficiency due to better organic-inorganic
interfacial compatibility can be obtained. The electron mobility for transporting in the TiO2 network is improved. A
power conversion efficiency has been increased 3 times by using this new hybrid material without optimization as
compared with the hybrid without P3HT-COOH modification.
The field effect devices prepared using active channels fabricated from doped conducting polymers, such as PEDOT/PSS (poly-(3,4-ethyldioxythiophene/poly(styrene sulfonic acid)), polypyrrole/Cl-, and polyaniline/Cl- with various dopants are reported. Normally in the "on" state, the devices have a sharp switch off at a small gate voltage. The current ratio Ion/Ioff can exceed 104 at room temperature. The temperature dependence of the dc conductivity of the PEDOT/PSS follows the variable range hopping law both before and after application of the gate voltage. The activation energy, T0, increases even for on/off ratios as small as 1.07 demonstrating that the electric field effect has changed the bulk charge transport in the active channel despite the expected screening due to mobile charge carriers. Based on these transport and optical studies we propose that the conducting polymer is near the metal-insulator transition and that the field effect in the transistor is related with electric field modulating this transition in the region underneath of gate through field induced ion motion. The time dynamics of current with the gate modulation strongly supports our proposal. Application of the Doped Polymer Field Effect Devices (DPFEDs) to form circuit components has been demonstrated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.