Optical mode sorters are a key enabling technology that have been widely used in communication and sensing systems. Conventionally, these are designed for a particular set of optical modes based on specific geometric transformation. We present a new approach for free-space optical mode sorting that can be tailored to measure any set of spatial modes or arbitrary superpositions of modes. Our approach is enabled by the combination of a reconfigurable photonics integrated circuit (PIC) interfaced with a Multiple-Plane-Light-Converter (MPLC) for pure optical mode processing. We have successfully sorted a range of high order spatial modes with crosstalk with a mean value -16dB and a reconfigurability greater than 12kHz.
Monolithic cointegration of electronics and photonics in the same silicon die is expected to enable a new realm of high-performance electro-optical systems for telecommunications, automotive, datacenter and sensing applications. As an alternative to integrating photonic devices into well-established microelectronic technologies, in this paper we report on the integration of CMOS electronic circuits in a commercial Silicon Photonics technology. Transistors with a threshold voltage of 1.84V, a gain factor of 4 μA/V2 and an Early voltage of 35V have been obtained by using the same masks as the photonic layer, without any additional technological steps in a truly zero-change paradigm. The paper reports a first application of this novel approach, showing time-multiplexed control of a 16-to-1 optical router enabled by an on-chip analog multiplexer.
We report on the use of programmable silicon photonic meshes of thermally tuneable interferometers to manipulate dynamically guided-wave and free-space optical beams on a chip through arbitrary linear transformations. Several applications are presented, including automatic reconstruction and unscrambling of mixed optical modes; forming and steering of free-space optical beams; coupling of free-space beams from arbitrary directions of arrival to single-mode waveguides; phase front reconstruction and beaming through scattering media. Automatic self-configuration of the meshes is achieved by exploiting built-in transparent monitors, beam labelling and thermal crosstalk cancellation strategies, enabling scalability to photonic meshes with a large number of interferometers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.