The main instrument of the space mission "Spectr-UF" (World Space Observatory-Ultraviolet) is a large space telescope to work in the UV wavelength domain (115 - 310 nm). The WSO-UV telescope feeds in its focal plane two main instruments: unit of spectrographs WUVS, and field camera unit FCU, as well as Fine Guidance System (FGS). The imaging instrument FCU onboard WSO-UV will be the first UV camera to be flown to a geosynchronous orbit. Here we provide a brief description on updated FCU instrument and its current status.
The WSO-UV project is an efficient multipurpose orbital observatory for high sensitivity imaging. The imaging instrument Field Camera Unit (FCU) onboard WSO-UV will be the first UV camera to be flown to a geosynchronous orbit. The observatory is planned to operate for at least five years and perhaps longer. WSO-UV will open new opportunities in planetary science, stellar astrophysics, extragalactic astronomy and cosmology. This paper provides an information on updated FCU instrument.
The World Space Observatory--Ultraviolet (WSO--UV) is a Russian-Spanish space mission born as a response to the growing up demand for UV facilities by the astronomical community. Main components of the WSO-UV Ground Segment, Mission Control Centre and Science Operation Centre, are being developed by international cooperation In this paper the fundamental components of WSO-UV ground segment are described. Also approaches to optimize observatory scheduling problem are discussed.
Based on the ray tracing method, we developed algorithms for constructing numerical model of spectroscopic instrumentation. The Software is realized in C ++ using nVidia CUDA technology. The software package consists of three separate modules: the ray tracing module, a module for calculating energy efficiency and module of CCD image simulation. The main objective of this work was to obtain images of the spectra for the cross-dispersed spectrographs as well as segmented aperture Long Slit Spectrograph. The software can be potentially used by WSO-UV project. To test our algorithms and the software package we have performed simulations of the ground cross-dispersed Nasmyth Echelle Spectrometer (NES) installed on the platform of the Nasmyth focus of the Russian 6-meter BTA telescope. The comparison of model images of stellar spectra with observations on this device confirms that the software works well. The high degree of agreement between the theoretical and real spectra is shown.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.