Knowledge of how proteins organize into functional complexes is essential to understand their biological function. Optical super-resolution techniques provide the spatial resolution necessary to visualize and to investigate individual protein complexes in the context of their cellular environment. Single-molecule localization microscopy (SMLM) builds on the detection of single fluorophore labels, which next to the generation of high-resolution images provides access to quantitative molecular information. We developed various tools for quantitative SMLM (qSMLM), an imaging method that both super-resolves individual protein clusters and reports on molecular numbers by analyzing the kinetics of single emitter blinking. This method is compatible with both fluorescent proteins and organic fluorophores. With qSMLM, we quantify protein copy numbers in single clusters, and we study how changes in the stoichiometry of protein complexes translates into function.
KEYWORDS: Fluorescence resonance energy transfer, Imaging systems, Multiplexing, Super resolution, Signal detection, Microscopy, Super resolution microscopy
Correlating DNA-PAINT (point accumulation for imaging in nanoscale topography) and single-molecule FRET (Förster resonance energy transfer) enables the multiplexed detection with sub-diffraction optical resolution. We designed pairs of short oligonucleotides, labeled with donor and acceptor fluorophores with various distances generating different FRET efficiencies. The strands can transiently bind to a target docking strand, simultaneous binding of both strands results in FRET signals which yield a super-resolved image via DNA-PAINT imaging. We demonstrate FRET-PAINT by designing and imaging DNA origami, which is a useful tool to establish super-resolution methods. The DNA origami structures were equipped with three target binding sites spaced by 55 nm, a sub-diffraction limited distance, however ensuring that no FRET between the target sites occurs. We resolved the individual binding sites in the donor and acceptor channels, and in addition extracted the FRET efficiency for each site in single and mixed populations. The combination of FRET and DNA-PAINT allows for multiplexed super-resolution imaging in conjunction with distance-sensitive readout in the 1 to 10 nm range.
In the brain, the strength of each individual synapse is defined by the complement of proteins present or the “local proteome.” Activity-dependent changes in synaptic strength are the result of changes in this local proteome and posttranslational protein modifications. Although most synaptic proteins have been identified, we still know little about protein copy numbers in individual synapses and variations between synapses. We use DNA-point accumulation for imaging in nanoscale topography as a single-molecule super-resolution imaging technique to visualize and quantify protein copy numbers in single synapses. The imaging technique provides near-molecular spatial resolution, is unaffected by photobleaching, enables imaging of large field of views, and provides quantitative molecular information. We demonstrate these benefits by accessing copy numbers of surface AMPA-type receptors at single synapses of rat hippocampal neurons along dendritic segments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.