The Advanced Baseline Imager (ABI) is the primary instrument onboard GOES-R for imaging Earth’s weather, climate,
and environment and will be used for a wide range of applications related to weather, oceans, land, climate, and hazards
(fires, volcanoes, hurricanes, and storms that spawn tornados). It will provide over 65% of all the mission data products
currently defined. ABI views the Earth with 16 different spectral bands, including two visible channels, four nearinfrared
channels and ten infrared channels at 0.5, 1, and 2 km spatial resolutions respectively. For most of the
operational ABI retrieval algorithms, the collocated/co-registered radiance dataset are at 2 km resolution for all of the
bands required. This requires down-scaling of the radiance data from 0.5 or 1 km to 2 km for ABI visible and near-IR
bands (2 or 1, 3 & 5 respectively), the reference of 2 km is the nominal resolution at the satellite sub-point. In this paper,
the spatial resolution characteristic of the ABI fixed grid level1b radiance data is discussed. An optimum interpolation
algorithm which has been developed for the ABI multiple channel radiance down-scaling processing is present.
With the availability of very accurate six hour forecasts, the metric of accuracy alone for the evaluation of
the performance of a retrieval system can produce misleading results: the retrievals may be statistically
accurate, but be of little value compared to the accurate forecast. A useful characterization of the quality of
a retrieval system and its potential to contribute to an improved weather forecast is its skill, which we
define as the ability to make retrievals of geophysical parameters which are closer to the truth than the six
hour forecast. We illustrate retrieval skill using one day of AMSU-A and AIRS data with three different
retrieval algorithms. In the spirit of achieving global retrievals under clear and cloudy conditions, we
evaluated retrieval accuracy and skill for 90% of the covered area. Two of the three algorithms meet the 1
K/1 km "RAOB quality" accuracy requirement and have skill between 900 and 150 hPa, but none have
skill between the surface and 900 hPa.
AIRS was launched on the EOS Aqua spacecraft in May 2002 into a 705 km polar sun-synchronous orbit
with accurately maintained 1:30 PM ascending node. Essentially un-interrupted data are freely available
since September 2002.
An evaluation of the temperature, water vapor, and ozone profile retrievals from the AIRS data is performed with more
than three years of collocated radiosondes (RAOBs) and ozonesonde (O3SND) measurements. The Aqua-AIRS version
4.0 retrievals, global RAOB and O3SND measurements, forecast data from the NCEP_GFS, ECMWF, and the NOAA-
16 ATOVS retrievals are used in this validation and relative performance assessment. The results of the inter-comparison
of AIRS temperature, water vapor and ozone retrievals reveal very good agreement with the measurements
from RAOBs and O3SND s. The temperature RMS difference is close to the expected product goal accuracies, viz. 1oK
in 1 km layers for the temperature and close to 15% in 2-km layers for the water vapor in the troposphere. The AIRS
temperature retrieval bias is a little larger than the biases shown by the ATOVS, NCEP_GFS, and ECMWF forecasts.
With respect to the ozone profile retrieval, the retrieval bias and RMS difference with O3SNDs is less than 5% and 20%
respectively for the stratosphere. The total ozone from the AIRS retrievals matches very well with the Dobson/Brewer
station measurements with a bias less than 2%. Overall, the analysis performed in this paper show a remarkable degree
of confidence in the AIRS retrievals.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.