We describe the amplitude and resolution trends of the signals acquired by turbidity suppression through optical phase conjugation (TSOPC) with samples that span the ballistic and diffusive scattering regimes. In these experiments, the light field scattered through a turbid material is written into a hologram, and a time-reversed copy of the light field is played back through the sample. In this manner, the wavefront originally incident on the sample is reconstructed. We examine a range of scattering samples including chicken breast tissue sections of increasing thickness and polyacrylamide tissue-mimicking phantoms with increasing scattering coefficients. Our results indicate that only a small portion of the scattered wavefront (<0.02%) must be collected to reconstruct a TSOPC signal. Provided the sample is highly scattering, all essential angular information is contained within such small portions of the scattered wavefront due to randomization by scattering. A model is fitted to our results, describing the dependence of the TSOPC signal on other measurable values within the system and shedding light on the efficiency of the phase conjugation process. Our results describe the highest level of scattering that has been phase conjugated in biological tissues to date.
We present spectral domain phase microscopy (SDPM) as a new tool for measurements at the cellular scale. SDPM is a functional extension of spectral domain optical coherence tomography that allows for the detection of cellular motions and dynamics with nanometer-scale sensitivity in real time. Our goal was to use SDPM to investigate the mechanical properties of the cytoskeleton of MCF-7 cells. Magnetic tweezers were designed to apply a vertical force to ligand-coated magnetic beads attached to integrin receptors on the cell surfaces. SDPM was used to resolve cell surface motions induced by the applied stresses. The cytoskeletal response to an applied force is shown for both normal cells and those with compromised actin networks due to treatment with Cytochalasin D. The cell response data were fit to several models for cytoskeletal rheology, including one- and two-exponential mechanical models, as well as a power law. Finally, we correlated displacement measurements to physical characteristics of individual cells to better compare properties across many cells, reducing the coefficient of variation of extracted model parameters by up to 50%.
We review the current state of research in endoscopic optical coherence tomography (OCT). We first survey the range of available endoscopic optical imaging techniques. We then discuss the various OCT-based endoscopic methods that have thus far been developed. We compare the different endoscopic OCT methods in terms of their scan performance. Next, we examine the application range of endoscopic OCT methods. In particular, we look at the reported utility of the methods in digestive, intravascular, respiratory, urinary and reproductive systems. We highlight two additional applications—biopsy procedures and neurosurgery—where sufficiently compact OCT-based endoscopes can have significant clinical impacts.
The use of indocyanine green (ICG), a U.S. Food and Drug Administration approved dye, in a pump-probe scheme for molecular contrast optical coherence tomography (MCOCT) is proposed and demonstrated for the first time. In the proposed pump-probe scheme, an optical coherence tomography (OCT) scan of the sample containing ICG is first acquired. High fluence illumination (~190 kJ/cm2) is then used to permanently photobleach the ICG molecules—resulting in a permanent alteration of the overall absorption of the ICG. A second OCT scan is next acquired. The difference of the two OCT scans is used to determine the depth resolved distribution of ICG within a sample. To characterize the extent of photobleaching in different ICG solutions, we determine the cumulative probability of photobleaching, B,cum, defined as the ratio of the total photobleached ICG molecules to the total photons absorbed by the ground state molecules. An empirical study of ICG photobleaching dynamics shows that B,cum decreases with fluence as well as with increasing dye concentration. The quantity B,cum is useful for estimating the extent of photobleaching in an ICG sample (MCOCT contrast) for a given fluence of the pump illumination. The paper also demonstrates ICG-based MCOCT imaging in tissue phantoms as well as within stage 54 Xenopus laevis.
Use of indocyanine green (ICG), an FDA-approved dye, in a pump-probe scheme for optical coherence tomography (OCT) is reported. Aqueous solutions of ICG are not stable, i.e., the dye degrades over time especially in the presence of light. Addition of protein such as bovine serum albumin (BSA) stabilizes the ICG; however, when exposed to high intensity illumination, the dye still degrades. Moreover, the photodegradation is permanent and occurs swiftly if the illumination band corresponds to the ICG absorption peak. The permanence of the photobleached state illustrates that ICG photobleaching phenomenon has great potential to achieve contrast in OCT. ICG solutions with 50 micromolar concentration were prepared in water, 1% BSA, and 0.8% agarose to study the dynamics of the dye for different illumination intensity levels. In addition, different molar concentrations of ICG in water were studied for fixed illumination intensity. In each case, probability of photobleaching, defined as the ratio of the total photobleached ICG molecules to the total photons absorbed by the ground-state molecules, is evaluated to characterize the photobleaching phenomenon in ICG. We also demonstrate ICG-based pump-probe MCOCT imaging by mapping the distribution of ICG in a stage 54 Xenopus laevis.
The phase information inherent to spectral domain optical coherence tomography (OCT) processing can be exploited to resolve sub-coherence length displacement variations. Spectral domain phase microscopy (SDPM) is a functional extension of Fourier domain OCT whose common-path topology enables extraordinary phase sensitivity. Here we demonstrate the usefulness of SDPM in three biologically relevant applications: real-time tracking of cell surface displacements of contracting cardiac myocytes, extracting cytoplasmic flow characteristics for a single-celled organism (flow rates ~10-30μm/s), and cellular mechanical responses to cytoskeletal drug treatments. The results of these experiments are corroborated by light microscopy acquired concurrently with the SDPM data.
Broadband interferometry is an attractive technique for the detection of cellular motions because it provides depth-resolved interferometric phase information via coherence gating. Here a phase sensitive technique called spectral domain phase microscopy (SDPM) is presented. SDPM is a functional extension of spectral domain optical coherence tomography that allows for the detection of cellular motions and dynamics with nanometer-scale sensitivity. This sensitivity is made possible by the inherent phase stability of spectral domain OCT combined with common-path interferometry. The theory that underlies this technique is presented, the sensitivity of the technique is demonstrated by the measurement of the thermal expansion coefficient of borosilicate glass, and the response of an Amoeba proteus to puncture of its cell membrane is measured. We also exploit the phase stability of SDPM to perform Doppler flow imaging of cytoplasmic streaming in A. proteus. We show reversal of cytoplasmic flow in response to stimuli, and we show that the cytoplasmic flow is laminar (i.e. parabolic) in nature. We are currently investigating the use of SDPM in a variety of different cell types.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.