NIHTS is a first-generation instrument now in use on Lowell Observatory’s Discovery Channel Telescope. It is a nearinfrared prism spectrograph of the BASS design featuring high throughput and low dispersion that is intended for observations of faint solar system and astrophysical objects over the YJHK spectral range. An unusual feature is its ability to observe simultaneously with the Large Monolithic Imager, an optical CCD camera, by means of a dichroic fold mirror. This is particularly valuable for time-variable targets such as Kuiper Belt Objects, asteroids, exoplanet transits, and brown dwarfs. We describe its design details and performance both in the lab and on the telescope.
The Immersion GRating INfrared Spectrometer (IGRINS) was designed for high-throughput with the expectation of being a visitor instrument at progressively larger observing facilities. IGRINS achieves R∼45000 and > 20,000 resolution elements spanning the H and K bands (1.45-2.5μm) by employing a silicon immersion grating as the primary disperser and volume-phase holographic gratings as cross-dispersers. After commissioning on the 2.7 meter Harlan J. Smith Telescope at McDonald Observatory, the instrument had more than 350 scheduled nights in the first two years. With a fixed format echellogram and no cryogenic mechanisms, spectra produced by IGRINS at different facilities have nearly identical formats. The first host facility for IGRINS was Lowell Observatory’s 4.3-meter Discovery Channel Telescope (DCT). For the DCT a three-element fore-optic assembly was designed to be mounted in front of the cryostat window and convert the f/6.1 telescope beam to the f/8.8 beam required by the default IGRINS input optics. The larger collecting area and more reliable pointing and tracking of the DCT improved the faint limit of IGRINS, relative to the McDonald 2.7-meter, by ∼1 magnitude. The Gemini South 8.1-meter telescope was the second facility for IGRINS to visit. The focal ratio for Gemini is f/16, which required a swap of the four-element input optics assembly inside the IGRINS cryostat. At Gemini, observers have access to many southern-sky targets and an additional gain of ∼1.5 magnitudes compared to IGRINS at the DCT. Additional adjustments to IGRINS include instrument mounts for each facility, a glycol cooled electronics rack, and software modifications. Here we present instrument modifications, report on the success and challenges of being a visitor instrument, and highlight the science output of the instrument after four years and 699 nights on sky. The successful design and adaptation of IGRINS for various facilities make it a reliable forerunner for GMTNIRS, which we now anticipate commissioning on one of the 6.5 meter Magellan telescopes prior to the completion of the Giant Magellan Telescope.
Lowell Observatory's Discovery Channel Telescope (DCT) is a 4.3-m telescope designed and constructed for optical and near infrared astronomical observation. The DCT is equipped with a cube at the RC focus capable of interfacing to five instruments along with the wave front sensing and guider systems at the f/6.1 RC focus. Over the period 2016 through mid-2018 the instrument cube ports were fully populated as several instruments new to the DCT were brought on-line (NIHTS, IGRINS, EXPRES). The primary and secondary mirrors of the telescope were re-aluminized, and the coating process modified. The facility operational modes have been refined to allow for greater flexibility and faster response to unexpected science opportunities. This report addresses operational methods, instrumentation integration, and the performance of the facility as determined from delivered science data, lessons learned, and plans for future work and additional instruments.
G. Ricker, R. Vanderspek, J. Winn, S. Seager, Z. Berta-Thompson, A. Levine, J. Villasenor, D. Latham, D. Charbonneau, M. Holman, J. Johnson, D. Sasselov, A. Szentgyorgyi, G. Torres, G. Bakos, T. Brown, J. Christensen-Dalsgaard, H. Kjeldsen, M. Clampin, S. Rinehart, D. Deming, J. Doty, E. Dunham, S. Ida, N. Kawai, B. Sato, J. Jenkins, J. Lissauer, G. Jernigan, L. Kaltenegger, G. Laughlin, D. Lin, P. McCullough, N. Narita, J. Pepper, K. Stassun, S. Udry
KEYWORDS: Exoplanets, Stars, Satellites, Planets, Cameras, Space telescopes, James Webb Space Telescope, Space operations, Charge-coupled devices, Observatories
The Transiting Exoplanet Survey Satellite (TESS) will discover thousands of exoplanets in orbit around the brightest stars in the sky. This first-ever spaceborne all-sky transit survey will identify planets ranging from Earth-sized to gas giants. TESS stars will be far brighter than those surveyed by previous missions; thus, TESS planets will be easier to characterize in follow-up observations. For the first time it will be possible to study the masses, sizes, densities, orbits, and atmospheres of a large cohort of small planets, including a sample of rocky worlds in the habitable zones of their host stars.
KEYWORDS: Exoplanets, Observatories, Photometry, Stars, Data modeling, Infrared astronomy, Rayleigh scattering, Signal to noise ratio, Point spread functions, Planets
Here, we report on the first successful exoplanet transit observation with the Stratospheric Observatory for Infrared Astronomy (SOFIA). We observed a single transit of the hot Jupiter HD 189733 b, obtaining two simultaneous primary transit lightcurves in the B and z′ bands as a demonstration of SOFIA’s capability to perform absolute transit photometry. We present a detailed description of our data reduction, in particular, the correlation of photometric systematics with various in-flight parameters unique to the airborne observing environment. The derived transit depths at B and z′ wavelengths confirm a previously reported slope in the optical transmission spectrum of HD 189733 b. Our results give new insights to the current discussion about the source of this Rayleigh scattering in the upper atmosphere and the question of fixed limb darkening coefficients in fitting routines.
KEYWORDS: Stars, Planets, Exoplanets, Space operations, Satellites, Cameras, Charge-coupled devices, Space telescopes, James Webb Space Telescope, Observatories
The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its 2-year mission, TESS will employ four wide-field optical charge-coupled device cameras to monitor at least 200,000 main-sequence dwarf stars with IC≈4−13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from 1 month to 1 year, depending mainly on the star’s ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10 to 100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every 4 months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest stars hosting transiting planets, which will endure as highly favorable targets for detailed investigations.
KEYWORDS: Stars, Planets, Space operations, Cameras, Charge-coupled devices, Space telescopes, Exoplanets, Observatories, James Webb Space Telescope, Sensors
The Transiting Exoplanet Survey Satellite (TESS ) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its two-year mission, TESS will employ four wide-field optical CCD cameras to monitor at least 200,000 main-sequence dwarf stars with IC (approximately less than) 13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from one month to one year, depending mainly on the star's ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10-100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every four months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest stars hosting transiting planets, which will endure as highly favorable targets for detailed investigations.
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is the world’s largest airborne observatory, featuring a
2.5 meter effective aperture telescope housed in the aft section of a Boeing 747SP aircraft. SOFIA’s current instrument
suite includes: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), a 5-40 μm dual band
imager/grism spectrometer developed at Cornell University; HIPO (High-speed Imaging Photometer for Occultations), a
0.3-1.1μm imager built by Lowell Observatory; GREAT (German Receiver for Astronomy at Terahertz Frequencies), a
multichannel heterodyne spectrometer from 60-240 μm, developed by a consortium led by the Max Planck Institute for
Radio Astronomy; FLITECAM (First Light Infrared Test Experiment CAMera), a 1-5 μm wide-field imager/grism
spectrometer developed at UCLA; FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), a 42-200 μm IFU grating
spectrograph completed by University Stuttgart; and EXES (Echelon-Cross-Echelle Spectrograph), a 5-28 μm highresolution
spectrometer designed at the University of Texas and being completed by UC Davis and NASA Ames
Research Center. HAWC+ (High-resolution Airborne Wideband Camera) is a 50-240 μm imager that was originally
developed at the University of Chicago as a first-generation instrument (HAWC), and is being upgraded at JPL to add
polarimetry and new detectors developed at Goddard Space Flight Center (GSFC). SOFIA will continually update its
instrument suite with new instrumentation, technology demonstration experiments and upgrades to the existing
instrument suite. This paper details the current instrument capabilities and status, as well as the plans for future
instrumentation.
William DeGroff, Stephen Levine, Thomas Bida, Frank Cornelius, Peter Collins, Edward Dunham, Ben Hardesty, Michael Lacasse, Mike Sweaton, Alex Venetiou, Saeid Zoonemat Kermani, Philip Massey, M. Lisa Foley, Heidi Larson, Jason Sanborn, Susan Strosahl, Ron Winner, Teznie Pugh
Lowell Observatory's Discovery Channel Telescope is a 4.3m telescope designed and constructed for optical and near infrared astronomical observation. It is equipped with a cube capable of carrying five instruments and the wave front sensing and guider systems at the f/6.1 RC focus. We report on the overall operations methods for the facility, including coordination of day and night activities, and then cover pointing, and unguided and guided tracking performance of the mount. We also discuss the implementation and performance of the open loop model for, and manual wavefront sensing and correction with the active optics system. We conclude with a report on the early integrated image quality and science performance of the facility using the first science instrument, the Large Monolithic Imager.
The 4.3m Discovery Channel Telescope (DCT) has been conducting part-time science operations since January 2013.
The f/6.1, 0.5° field-of-view at the RC focus is accessible through the Cassegrain instrument cube assembly, which can
support 5 co-mounted instruments with rapid feed selection via deployable fold mirrors. Lowell Observatory has
developed the Large Monolithic Imager (LMI), a 12.3' FOV 6K x 6K single CCD camera with a dual filter wheel, and
installed at the straight-through, field-corrected RC focal station, which has served as the primary early science DCT
instrument. Two low-resolution facility spectrographs are currently under development with first light for each
anticipated by early 2015: the upgraded DeVeny Spectrograph, to be utilized for single object optical spectroscopy, and
the unique Near-Infrared High-Throughput Spectrograph (NIHTS), optimized for single-shot JHK spectroscopy of faint
solar system objects. These spectrographs will be mounted at folded RC ports, and the NIHTS installation will feature
simultaneous optical imaging with LMI through use of a dichroic fold mirror. We report on the design, construction,
commissioning, and progress of these 3 instruments in detail. We also discuss plans for installation of additional facility
instrumentation on the DCT.
The High-speed Imaging Photometer for Occultations (HIPO) is a special purpose science instrument for SOFIA. HIPO
can be co-mounted with FLITECAM in the so-called FLIPO configuration for stellar occultation or extrasolar planet
transit observations. We gained some flight experience with HIPO and FLITECAM in 2011 as described in a previous
publication (Dunham, et al., Proc SPIE, 8446-42, 2012). Since that time a number of improvements to HIPO have been
made and a deeper understanding of the airborne environment's impact on photometric precision at optical wavelengths
has been obtained. The improvements to HIPO include an improved beamsplitter for the FLIPO configuration, adding
deep depletion CCDs as a detector option, expanding the filter set to include a Sloan Digital Sky Survey filter set as well
as two custom filters for transit work, and an ability to guide the SOFIA telescope using HIPO data being acquired for
science purposes. We now understand that variations in PSF size due to varying static air density has a noticeable
impact on photometric stability while the related effect of Mach number is unimportant. The seriousness of ozone
absorption in the Chappuis band is now understood and an approach to avoid this has been found. Finally we present
demonstration transit data to illustrate our current transit photometry capability.
We present a status report and early commissioning results for FLITECAM, the 1-5 micron imager and spectrometer for
SOFIA (the Stratospheric Observatory for Infrared Astronomy). In February 2014 we completed six flights with
FLITECAM mounted in the FLIPO configuration, a co-mounting of FLITECAM and HIPO (High-speed Imaging
Photometer for Occultations; PI Edward W. Dunham, Lowell Observatory). During these flights, the FLITECAM modes
from ~1-4 μm were characterized. Since observatory verification flights in 2011, several improvements have been made
to the FLITECAM system, including the elimination of a light leak in the FLITECAM filter wheel enclosure, and
updates to the observing software. We discuss both the improvements to the FLITECAM system and the results from the
commissioning flights, including updated sensitivity measurements. Finally, we discuss the utility of FLITECAM in the
FLIPO configuration for targeting exoplanet transits.
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is an airborne observatory, carrying a 2.5 m telescope onboard a heavily modified Boeing 747SP aircraft. SOFIA is optimized for operation at infrared wavelengths, much of which is obscured for ground-based observatories by atmospheric water vapor. The SOFIA science instrument complement consists of seven instruments: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), GREAT (German Receiver for Astronomy at Terahertz Frequencies), HIPO (High-speed Imaging Photometer for Occultations), FLITECAM (First Light Infrared Test Experiment CAMera), FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), EXES (Echelon-Cross-Echelle Spectrograph), and HAWC (High-resolution Airborne Wideband Camera). FORCAST is a 5–40 μm imager with grism spectroscopy, developed at Cornell University. GREAT is a heterodyne spectrometer providing high-resolution spectroscopy in several bands from 60–240 μm, developed at the Max Planck Institute for Radio Astronomy. HIPO is a 0.3–1.1 μm imager, developed at Lowell Observatory. FLITECAM is a 1–5 μm wide-field imager with grism spectroscopy, developed at UCLA. FIFI-LS is a 42–210 μm integral field imaging grating spectrometer, developed at the University of Stuttgart. EXES is a 5–28 μm high-resolution spectrograph, developed at UC Davis and NASA ARC. HAWC is a 50–240 μm imager, developed at the University of Chicago, and undergoing an upgrade at JPL to add polarimetry capability and substantially larger GSFC detectors. We describe the capabilities, performance, and status of each instrument, highlighting science results obtained using FORCAST, GREAT, and HIPO during SOFIA Early Science observations conducted in 2011.
The NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA) employs a 2.5-meter reflector telescope in
a Boeing 747SP. The telescope is housed in an open cavity and is subjected to aeroacoustic and inertial disturbances in
flight. To meet pointing requirements, SOFIA must achieve a pointing stability of approximately 0.5 arcseconds RMS.
An active damping control system is being developed for SOFIA to reduce image jitter and image degradation due to
resonance of the telescope assembly. Our paper discusses the history of the active damping design for SOFIA, from
early concepts to the current implementation which has recently completed a ground and flight testing for proof-of-concept.
We describe some milestones in the analysis and testing of the telescope assembly which guided the
development of the vibration control system. The control synthesis approach and current implementation of the active
damping control system is presented. Finally, we summarize the performance observed in early flight tests and the steps
that are currently foreseen to completing the development of this system.
The Stratospheric Observatory for Infrared Astronomy (SOFIA) has recently concluded a set of engineering flights for Observatory performance evaluation. These in-flight opportunities have been viewed as a first comprehensive assessment of the Observatory's performance and will be used to address the development activity that
is planned for 2012, as well as to identify additional Observatory upgrades. A series of 8 SOFIA Characterization
And Integration
flights have been conducted from June to December 2011. The HIPO science instrument in
conjunction with the DSI Super Fast Diagnostic Camera (SFDC) have been used to evaluate pointing stability,
including the image motion due to rigid-body and
flexible-body telescope modes as well as possible aero-optical
image motion. We report on recent improvements in pointing stability by using an Active Mass Damper system
installed on Telescope Assembly. Measurements and characterization of the shear layer and cavity seeing, as
well as image quality evaluation as a function of wavelength have been performed using the HIPO+FLITECAM
Science Instrument conguration (FLIPO). A number of additional tests and measurements have targeted basic
Observatory capabilities and requirements including, but not limited to, pointing accuracy, chopper evaluation
and imager sensitivity. This paper reports on the data collected during these
flights and presents current SOFIA
Observatory performance and characterization.
This paper describes the current status of FLITECAM, the near-infrared (1 - 5 μm) camera and spectrometer for
NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA). Due to a change in schedule FLITECAM’s
delivery was advanced, allowing it to be co-mounted with the HIPO instrument and used on four flights in October 2011
for observatory verification. Although not part of FLITECAM’s commissioning time, some preliminary performance
characteristics were determined. Image size as a function of wavelength was measured prior to the installation of active
mass dampers on the telescope. Preliminary grism spectroscopy was also obtained. In addition, FLITECAM was used to
measure the emissivity of the telescope and warm optics in the co-mounted configuration. New narrow band filters were
added to the instrument, including a Paschen alpha filter for line emission. Results are illustrated.
HIPO is a special purpose science instrument for SOFIA that was also designed to be used for Observatory test work. It
was used in a series of flights from June to December 2011 as part of the SOFIA Characterization and Integration
(SCAI) flight test program. Partial commissioning of HIPO and the co-mounted HIPO-FLITECAM (FLIPO)
configuration were included within the scope of the SCAI work. The commissioning measurements included such
things as optical throughput, image size and shape as a function of wavelength and exposure time, image motion
assessment over a wide frequency range, scintillation noise, photometric stability assessment, twilight sky brightness,
cosmic ray rate as a function of altitude, telescope pointing control, secondary mirror control, and GPS time and position
performance. As part of this work we successfully observed a stellar occultation by Pluto, our first SOFIA science data.
We report here on the observed in-flight performance of HIPO both when mounted alone and when used in the FLIPO
configuration.
We present a new and innovative near-infrared multi-band ultraprecise spectroimager (NIMBUS) for SOFIA. This design is capable of characterizing a large sample of extrasolar planet atmospheres by measuring elemental and molecular abundances during primary transit and occultation. This wide-field spectroimager would also provide new insights into Trans-Neptunian Objects (TNO), Solar System occultations, brown dwarf atmospheres, carbon chemistry in globular clusters, chemical gradients in nearby galaxies, and galaxy photometric redshifts. NIMBUS would be the premier ultraprecise spectroimager by taking advantage of the SOFIA observatory and state of the art infrared technologies.
This optical design splits the beam into eight separate spectral bandpasses, centered around key molecular bands from 1 to 4μm. Each spectral channel has a wide field of view for simultaneous observations of a reference star that can decorrelate time-variable atmospheric and optical assembly effects, allowing the instrument to achieve ultraprecise calibration for imaging and photometry for a wide variety of astrophysical sources. NIMBUS produces the same data products as a low-resolution integral field spectrograph over a large spectral bandpass, but this design obviates many of the problems that preclude high-precision measurements with traditional slit and integral field spectrographs. This instrument concept is currently not funded for development.
SOFIA, the Stratospheric Observatory for Infrared Astronomy, is an airborne observatory with a 2.7-m telescope that is
under development by NASA and the German Aerospace Center DLR. From late 2010 and through the end of 2011,
SOFIA conducted a series of science demonstration flights, Early Science, using FORCAST (the Faint Object InfraRed
Camera for the SOFIA Telescope), HIPO (the High-speed Imaging Photometer for Occultations), and GREAT (the
German REceiver for Astronomy at Terahertz frequencies). Flying at altitudes as high as 13.7 km (45,000 ft), SOFIA
operates above more than 99.8% of the water vapor in the Earth’s atmosphere, opening up most of the far-infrared and
sub-millimeter parts of the spectrum. During Early Science, 30 science missions were flown with results in solar system
astronomy, star formation, the interstellar medium, the Galactic Center, and extragalactic studies. Many of these
investigations were conducted by the first group of SOFIA General Investigators, demonstrating the operation of SOFIA
as a facility for the astronomical community. This paper presents some recent highlights from Early Science.
KEYWORDS: Mirrors, Telescopes, Adaptive optics, Image quality, Control systems, Space telescopes, Data modeling, Observatories, Wavefront sensors, Active optics
Lowell Observatory's Discovery Channel Telescope is a 4.3m telescope designed for optical and near infrared astronomical observation. At first light, the telescope will have a cube capable of carrying five instruments and the wave front sensing and guider system at the f/6.1 RC focus. The corrected RC focus field of view is 30’ in diameter. Nasmyth and prime focus can be instrumented subsequently. Early commissioning work with the installed primary mirror and its support system started out using one of the wave front sensing probes mounted at prime focus, and has continued at RC with the recent installation of the secondary mirror. We will report on the on-sky pointing and tracking performance of the telescope, initial assessment of the functionality of the active optics support system, and tests of the early image quality of the telescope and optics. We will also describe the suite of first light instruments, and early science operations.
The 4.3m Discovery Channel Telescope delivers an f/6.1 unvignetted 0.5° field to its RC focal plane. In order to support
guiding, wavefront sensing, and instrument installations, a Cassegrain instrument support assembly has been developed
which includes a facility guider and wavefront sensor package (GWAVES) and multiple interfaces for instrumentation.
A 2-element, all-spherical, fused-silica corrector compensates for field curvature and astigmatism over the 0.5° FOV,
while reducing ghost pupil reflections to minimal levels. Dual roving GWAVES camera probes pick off stars in the
outer annulus of the corrected field, providing simultaneous guiding and wavefront sensing for telescope operations. The
instrument cube supports 5 co-mounted instruments with rapid feed selection via deployable fold mirrors. The corrected
beam passes through a dual filter wheel before imaging with the 6K x 6K single CCD of the Large Monolithic Imager
(LMI). We describe key development strategies for the DCT Cassegrain instrument assembly and GWAVES, including
construction of a prime focus test assembly with wavefront sensor utilized in fall 2011 to begin characterization of the
DCT primary mirror support. We also report on 2012 on-sky test results of wavefront sensing, guiding, and imaging
with the integrated Cassegrain cube.
The Kepler Mission is designed to detect the 80 parts per million (ppm) signal from an Earth-Sun equivalent
transit. Such precision requires superb instrument stability on time scales up to 2 days and systematic error
removal to better than 20 ppm. The sole scientific instrument is the Photometer, a 0.95 m aperture Schmidt
telescope that feeds the 94.6 million pixel CCD detector array, which contains both Science and Fine Guidance
Sensor (FGS) CCDs. Since Kepler's launch in March 2009, we have been using the commissioning and science
operations data to characterize the instrument and monitor its performance. We find that the in-flight detector
properties of the focal plane, including bias levels, read noise, gain, linearity, saturation, FGS to Science crosstalk,
and video crosstalk between Science CCDs, are essentially unchanged from their pre-launch values. Kepler's
unprecedented sensitivity and stability in space have allowed us to measure both short- and long- term effects from
cosmic rays, see interactions of previously known image artifacts with starlight, and uncover several unexpected
systematics that affect photometric precision. Based on these results, we expect to attain Kepler's planned
photometric precision over 90% of the field of view.
We describe a laboratory simulation of an image motion compensation system for SOFIA that uses high-speed image
acquisition from the science instrument HIPO as the sensing element of the system and a Newport voice-coil actuated
fast steering mirror as the correcting actuator. Performance of the system when coupled to the SOFIA secondary mirror
is estimated based on the known current performance of the secondary mirror controller. The system is described and
the observed performance is presented together with expectations for applicability in flight with SOFIA.
SOFIA, the Stratospheric Observatory for Infrared Astronomy, is an airborne observatory that will study the universe in
the infrared spectrum. A Boeing 747-SP aircraft will carry a 2.5 m telescope designed to make sensitive infrared
measurements of a wide range of astronomical objects. In 2008, SOFIA's primary mirror was demounted and coated for
the first time. After reintegration into the telescope assembly in the aircraft, the alignment of the telescope optics was
repeated and successive functional and performance testing of the fully integrated telescope assembly was completed on
the ground. The High-speed Imaging Photometer for Occultations (HIPO) was used as a test instrument for aligning the
optics and calibrating and tuning the telescope's pointing and control system in preparation for the first science
observations in flight. In this paper, we describe the mirror coating process, the subsequent telescope testing campaigns
and present the results.
KEYWORDS: Charge-coupled devices, Digital signal processing, Telescopes, Camera shutters, Image storage, Clocks, Mirrors, Stars, Wavefront sensors, Global Positioning System
HIPO is a special purpose instrument for SOFIA, the Stratospheric Observatory For Infrared Astronomy. It is a high-speed,
imaging photometer that will be used for a variety of time-resolved precise photometry observations, including
stellar occultations by solar system objects and transits by extrasolar planets. HIPO will also be used during the test
program for the SOFIA telescope, a process that began with a series of ground-based tests in 2004. The HIPO
requirements, optical design, overall description, and an early look at performance and planned data acquisition modes
have appeared in earlier papers (e.g. Dunham, et al., Proc. SPIE 5492, 592-603 (2004)). This paper provides an update
to the instrument description, final lab measurements of instrument performance, and a discussion of the data produced
by the various observing modes.
The Discovery Channel Telescope (DCT) is planned to have a state-of-the-art prime focus corrector which was described previously. The initial design contained I-line glasses which had long procurement times. Goodrich Corp. undertook a study funded by Lowell Observatory to determine whether significant savings in cost and schedule would be possible with an acceptable reduction in the performance of the telescope.
This paper reports on changes in the optical design of the wide-field optical corrector (WFOC) with a view to eliminating the long-lead materials. The consequent changes in performance are also discussed. The required FWHM of the telescope was relaxed somewhat and the imaging requirements of the ultraviolet (U) band were eliminated. The new design meets the two-degree field of view requirement and recovers most of the performance in the ultraviolet.
The Discovery Channel Telescope (DCT) is a 4.2-m telescope being built at a new site near Happy Jack, in northern Arizona. The DCT features a 2-degree-diameter field of view at prime focus and a Ritchey-Chretien (RC) configuration with Cassegrain and Nasmyth focus capability for optical/IR imaging and spectroscopy. Formal groundbreaking at the Happy Jack site for the DCT occurred on 12 July 2005, with construction of major facility elements underway.
KEYWORDS: Stars, Planets, Space operations, Photometry, Charge-coupled devices, Data centers, System on a chip, Aerospace engineering, Space telescopes, Signal to noise ratio
The Kepler Mission is a search for terrestrial planets specifically designed to detect Earth-size planets in the habitable zones of solar-like stars. In addition, the mission has a broad detection capability for a wide range of planetary sizes, planetary orbits and spectral types of stars. The mission is in the midst of the developmental phase with good progress leading to the preliminary design review later this year. Long lead procurements are well under way. An overview in all areas is presented including both the flight system (photometer and spacecraft) and the ground system. Launch is on target for 2007 on a Delta II.
The Discovery Channel Telescope (DCT) is a 4.2 meter telescope that will provide a two degree diameter well-corrected field of view at prime focus with wavelength coverage across the groundbased ultraviolet and optical range. The design of the telescope and the prime focus corrector are described in other papers at this conference. The prime focus of the DCT will be occupied by a CCD camera similar in scope to the SAO Megacam for the MMT, the CFHT MegaCam, and the Kepler focal plane, but with differences in detail. It will be used for a variety of planetary science and astrophysics observing programs, the most demanding technically being searches for near-Earth and Kuiper Belt objects. This paper describes the design requirements, major systems issues, current design, and expected performance of the prime focus camera for the DCT.
HIPO is a special purpose instrument for SOFIA, the Stratospheric Observatory For Infrared Astronomy. It is a high-speed, imaging photometer that will be used for a variety of time-resolved precise photometry observations, including stellar occultations by solar system objects and transits by extrasolar planets. HIPO has two independent CCD detectors and can also co-mount with FLITECAM, an
InSb imager and spectrometer, making simultaneous photometry at three wavelengths possible. HIPO's flexible design and high-speed imaging capability make it well suited to carry out initial test observations on the completed SOFIA system, and to this end a number of additional
features have been incorporated. Earlier papers have discussed the design requirements and optical design of HIPO. This paper provides an overview of the instrument, describes the instrument's features, and reviews the actual performance, in most areas, of the completed instrument.
We present results of an extended campaign to test astronomical and environmental qualities of the intended site for the Discovery Channel Telescope, located at 2361m elevation near Happy Jack, AZ. A semi-permanent test station has been in operation since January 2003, consisting of a Differential Image Motion Measurement (DIMM) system and a weather station. Median seeing derived from DIMM measurements for January 2003 - May 2004 on 117 separate nights was 0.84 arcsec, with a first-quartile average of 0.62 arcsec. A wind sensor array deployed on a 12.2m tower is used to characterize air flow over the site. We find that ground induced turbulence becomes more prevalent below the 7.3m level. The Lowell DIMM system has also been run adjacent to the WIYN telescope for simultaneous comparative
seeing measurements. Absolute correlations of DIMM seeing with WIYN image quality were good over two nights' observing under a range of environmental conditions.
The Discovery Channel Telescope (DCT) is a joint venture between Discovery Communications and Lowell Observatory. The telescope will have a 4.2-meter clear aperture, active primary mirror working at F/1.9. Two observing stations are presently planned; a Ritchey-Chretien focus some two meters behind the vertex of the primary mirror and a prime focus featuring a wide-field optical corrector (WFOC) with a two-degree field of view. The Ritchey-Chretien focus will be used for a variety of optical and near infrared imaging and spectroscopic instrumentation while the prime focus will be largely used as a survey tool to search for near-earth and Kuiper belt objects, for example.
In order to take advantage of sub-arc second seeing at the DCT site, a stringent set of requirements has been placed on the two foci. The requirements are for the full-width, half-maximum (FWHM) image of a point source to be less than 0.20 arc second at the Ritchey-Chretien focus over a 21 arc minute field and less than 0.27 arc second at prime focus in each of six filter bands including a very broad band for survey purposes.
This paper describes the optical design of the field correctors at the two foci. Particular attention is paid to the WFOC. This state of the art device poses a number of optical challenges which are discussed here, as well as mechanical challenges which are discussed elsewhere.
Lowell Observatory has initiated the development of a four meter class optical telescope with significant capabilities for solar system and broad spectrum astronomical research. Key to the Discovery Channel Telescope (DCT) is the ability to rapidly switch between 2 degree FOV imaging via a prime focus camera to 30 arc min FOV instrumentation at Ritchey-Chretien (RC) focus. The telescope is to be constructed at approximately 7700 feet altitude, Southeast of Flagstaff, Arizona at a site which has exhibited 0.6 arc sec best quartile seeing. The telescope will feature active optics and alignment capability and the Prime Focus Instrument will feature a Mosaic Focal Plane array of 40 2k x 4k CCDs. The RC instrument payload will be approximately 5000 lbs, allowing either large instruments or suites of co-mounted instruments. This telescope is being developed in partnership with Discovery Communications, Inc. (DCI), who will utilize the DCT and the association with Lowell Observatory to develop educational programming about astronomy and technology. The telescope will be a substantial enhancement to the current capabilities of Lowell Observatory.
The Lowell Observatory Instrumentation System (LOIS) is an instrument control software system with a common interface that can control a variety of instruments. Its user interface includes GUI-based, scripted, and remote program control interfaces, and supports operational paradigms ranging from traditional direct observer interaction to fully automated operation. Currently LOIS controls a total of ten instruments built at Lowell Observatory (including one for SOFIA), NASA Ames Research Center, MIT (for Magellan), and Boston University. Together, these instruments include optical and near-IR imaging, spectroscopic, and polarimetric capability. This paper reviews the actual design of LOIS in comparison to its original design requirements and implementation approaches, and evaluates its strengths and weaknesses relative to operational performance, user interaction and feedback, and extensibility to new instruments.
HIPO (High-speed Imaging Photometer for Occultations) is a special-purpose science instrument for use on SOFIA (the Stratospheric Observatory For Infrared Astronomy). HIPO covers the spectral range from the atmospheric UV cutoff at 0.3 microns to the silicon detector limit at 1.1 microns. It is a dual channel imaging photometer using 1Kx1K Marconi CCD47-20 frame transfer CCD detectors. In addition to its science applications, HIPO will be used extensively during performance testing of the SOFIA observatory. The optical design of the instrument includes optimized focal reducing optics for both blue and red channels, pupil viewing optics, and Shack-Hartmann test optics. The imaging performance is excellent, insuring that the instrument will provide a faithful representation of the SOFIA telescope's PSF (Point Spread Function) during test observations.
The primary goal of Kepler, a recently selected Discovery mission, is to search for terrestrial size planets orbiting other stars using the transit method. To accomplish this goal, a space-based photometer is being developed that employs a 0.95-meter Schmidt camera incorporating a large focal plane array (FPA). The FPA is populated with 42 large format custom CCD detectors with integral field flattening optics covering a 100 square degree field of view. The FPA will measure the precise relative intensity of approximately 100,000 main sequence stars nearly continuously over the mission's 4-year lifetime to search for the small changes caused by planetary transits. All critical electronics are housed immediately behind the FPA, which yields a low noise compact design that is both robust and fault tolerant. The design and development of the FPA, its detectors, its main systems issues, and their relationship to photometric precision will be discussed along with results from detailed performance models.
KEYWORDS: Planets, Stars, Photometry, Signal to noise ratio, Point spread functions, Planetary systems, Space operations, Data archive systems, Space telescopes, Sun
NASA's Kepler Mission is designed to determine the frequency of Earth-size and larger planets in the habitable zone of solar-like stars. It uses transit photometry from space to determine planet size relative to its star and orbital period. From these measurements, and those of complementary ground-based observations of planet-hosting stars, and from Kepler's third law, the actual size of the planet, its position relative to the habitable zone, and the presence of other planets can be deduced. The Kepler photometer is designed around a 0.95 m aperture wide field-of-view (FOV) Schmidt type telescope with a large array of CCD detectors to continuously monitor 100,000 stars in a single FOV for four years. To detect terrestrial planets, the photometer uses differential relative photometry to obtain a precision of 20 ppm for 12th magnitude stars. The combination of the number of stars that must be monitored to get a statistically significant estimate of the frequency of Earth-size planets, the size of Earth with respect to the Sun, the minimum number of photoelectrons required to recognize the transit signal while maintaining a low false-alarm rate, and the areal density of target stars of differing brightness are all critical to the photometer design.
We describe a multi-element refractive corrector for the prime focus of the proposed Lowell four-meter telescope. The design provides sub-half arcsecond images over a two-degree field of view, with a flat image surface and images that are confocal across a broad wavelength band covering the U to I spectral range. Initial studies cover the feasibility of fabrication and explore the possibility of a simple atmospheric dispersion corrector.
KEYWORDS: Stars, Charge-coupled devices, Planets, Photometry, Point spread functions, Space operations, Signal to noise ratio, Interference (communication), Cameras, Received signal strength
The thirty or so extrasolar planets that have been discovered to date are all about as large as Jupiter or larger. Finding Earth-size planets is a substantially more difficult task. We propose the use of spacebased differential photometry to detect the periodic changes in brightness of several hours duration caused by planets transiting their parent stars. The change in brightness for a Sun-Earth analog transit is 8 X 10-5. We describe the instrument and mission concepts that will monitor 100,000 main-sequence stars and detect on the order of 500 Earth-size planets, if terrestrial planets are common in the extended solar neighborhood.
KEYWORDS: Stars, Photometry, Signal to noise ratio, Space operations, Charge-coupled devices, Point spread functions, Numerical simulations, Planets, Image processing, Control systems
We have performed end-to-end laboratory and numerical simulations to demonstrate the capability of differential photometry under realistic operating conditions to detect transits of Earth-sized planets orbiting solar-like stars. Data acquisition and processing were conducted using the same methods planned for the proposed Kepler Mission. These included performing aperture photometry on large-format CCD images of an artificial star fields obtained without a shutter at a readout rate of 1 megapixel/sec, detecting and removing cosmic rays from individual exposures and making the necessary corrections for nonlinearity and shutterless operation in the absence of darks. We will discuss the image processing tasks performed `on-board' the simulated spacecraft, which yielded raw photometry and ancillary data used to monitor and correct for systematic effects, and the data processing and analysis tasks conducted to obtain lightcurves from the raw data and characterize the detectability of transits. The laboratory results are discussed along with the results of a numerical simulation carried out in parallel with the laboratory simulation. These two simulations demonstrate that a system-level differential photometric precision of 10-5 on five- hour intervals can be achieved under realistic conditions.
HOPI is a special-purpose science instrument for SOFIA that is designed to provide simultaneous high-speed time resolved imaging photometry at two optical wavelengths. We intend to make it possible to mount HOPI and FLITECAM on the SOFIA telescope simultaneously to allow data acquisition at two optical wavelengths and one near-IR wavelength. HOPI will have a flexible optical system and numerous readout modes, allowing many specialized observations to be made. The instrument characteristics required for our proposed scientific pursuits are closely aligned to those needed for critical tests of the completed SOFIA Observatory, and HOPI will be used heavily for these tests.
The basis for the pointing stability requirement in the SOFIA telescope is described. Fundamentally, it is desirable to retain the diffraction-limited image quality of the telescope to the shortest wavelengths not dominated by shear-layer seeing effects or intrinsic optical quality of the telescope. Image motion will blur the images, and may cause loss of signal and increased noise in science instruments. The expected diffraction and seeing limited image quality contributions are discussed, an analysis of the effects of image motion on observations is given, and examples related to the specification and to currently predicted performance for the SOFIA telescope are presented.
The Lowell Observatory Instrumentation System is the control system for a series of new instruments at Lowell, including the SOFIA first light instrument, HOPI. Sine these instruments will incorporate various detector systems and will be used with several telescopes, the concept of a loadable modulator based design was developed. The fundamental idea is to view the telescope, camera, and other instrument components as separate, interchangeable entities.
KEYWORDS: Planets, Stars, Photometry, Space operations, Charge-coupled devices, Exoplanets, Analog electronics, Sun, Signal to noise ratio, Planetary systems
With the detection of giant extrasolar planets and the quest for life on Mars, there is heightened interset in finding earth-class planets, those that are less than ten earth masses and might be life supporting. A space-based photometer has the ability to detect the periodic transits of earth-class planets for a wide variety of spectral types of stars. From the data and known type of host star, the orbital semi-major axis, size and characteristic temperature of each planet can be calculated. The frequency of planet formation with respect to spectral type and occurrence for both singular and multiple-stellar systems can be determined. A description is presented of a one-meter aperture photometer with a twelve-degree field of view and a focal plane of 21 CCDs. The photometer woudl continuously and simultaneously monitor 160,000 stars of visual magnitude <EQ 14. Its one-sigma system sensitivity for a transit of a 12th magnitude solar-like star by a planet of one-earth radius would be one part in 50,000. It is anticipated that about 480 earth-class planets would be detected along with 140 giant planets in transit and 1400 giant planets by reflected light. Densities could be derived for about seven case where the planet is seen in transit and radial velocities are measurable.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.