Unmanned airborne and dismounted soldier capability requirements continue to push for reduced size, weight, and power (SWaP) and high sensitivity infrared (IR) imaging in applications that were not previously practical. In response to these needs, Attollo Engineering has developed a 1280x1024, 5μm pixel pitch cooled mid wavelength infrared (MWIR) sensor that pushes the envelope in pixel pitch in addition to a 1280x1024, 10μm pixel sensor dual band sensor with additional sensitivity in the short wavelength infrared (SWIR) in order to exploit SWIR phenomenology including laser see spot functionality. Both of these sensors offer MWIR sensing capabilities but are also able to leverage aspects of Attollo’s detector design to enable SWIR sensing to varying degrees. This class of small pixel cooled, single and dual band IR sensor technology represents advancements in all aspects of the sensor’s design and development, and we will discuss the innovations made at Attollo to enable this capability including epitaxial detector design based on III V compound semiconductors, detector array and focal plane array fabrication, design of a low noise, dual band CTIA/DI readout integrated circuit (ROIC), vacuum dewar packaging, and electronics and firmware design. In this paper we will present on the status of high definition small pixel pitch MWIR and dual band SWIR/MWIR imaging technology at Attollo as it relates to these sensors including design and measurement data and imaging.
Small pixel pitch sensors offer opportunities for imaging system SWaP reduction that open up a variety of SWaP-constrained applications that were not previously feasible. Furthermore, small pixel digital sensors provide advantages in the form of additional SWaP reduction, noise immunity, and simplified interfacing requirements. With these motivations in mind, Attollo Engineering has developed a 640x512, 5μm pixel pitch, high operating temperature MWIR sensor based on III V compound semiconductor detector materials. We have adapted our 5μm pixel pitch SWIR processes for MWIR detector materials and have been able to achieve 99.5+% operability MWIR FPAs with BLIP performance operating at 130K. Additionally, we have developed a compact camera core with an integrated cooler and full featured camera electronics. The global shutter camera is capable of frame rates of up to 220 Hz or smaller windows in excess of 1 kHz and integration times as low as 100 nanoseconds. Attollo will discuss characteristics of this sensor and other related technologies.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.