Given enough exposure time the sensitivity of an astronomical instrument is ultimately limited by systematic errors, and the dominant source of systematic errors for most optical/infrared instruments is imperfect sky subtraction. In turn the limiting factor for sky subtraction accuracy is frequently the accuracy of flat field calibration, making these calibrations critical to the overall performance of the instrument.
The Anglo-Australian Telescope’s fibre-fed spectrographs, and in particular the multi-object integral field spectrograph SAMI, are reaching sky subtraction systematic error limits and this has motivated an upgrade to the calibration systems. SAMI and its successor HECTOR are calling for sky subtraction accuracies of at least 0.25%, with a goal of 0.06%, an improvement of 4-17 times.
Flat field calibrations can use dark sky, twilight sky or an illuminated screen (‘dome flats’). For multi-object spectrographs such as SAMI recalibration is required for each set of targets. This makes twilight flats impractical as it is impossible to guarantee the availability of clear twilight sky for every configuration. The dark night sky is the ideal calibrator, but the long integration times required result in onerous overheads. What is needed is a dome flat field system accurate enough to replace dark sky flats. To achieve this we have replaced both the existing screen and its illumination system.
The effective throughput of optical fibres feeding an instrument vary slightly as their paths change, so high accuracy demands that calibration be done with the telescope in the same position as the science observations. We have applied two new screens to the dome windscreen, either side of the aperture, so that it is possible to move a screen in front of the telescope while in any position.
There are two distinct purposes for flat fielding: photometric calibration and sky subtraction. For an ideal telescope these are equivalent but the existence of stray light creates subtle differences, and this has implications for design of the screen. When the primary purpose is sky subtraction the highest possible accuracy will be achieved with a screen that illuminates the telescope from all the directions that the night sky does. Consequently our screens match the size, shape and relative position of the windscreen aperture. The screens are implemented as Avian D diffuse reflectance coating applied to the dome windscreen itself. Avian D is highly Lambertian, has high reflectance and is durable enough for the observatory environment.
The screens must be illuminated uniformly, in terms of spatial variations of both total intensity and spectral energy distribution (SED). We use an array of lamps around the end of the telescope tube. By using LEDs we are able to customise the SED and obtain a signal to noise ratio that is more consistent across wavelengths than is possible with traditional quartz tungsten halogen flat field lamps.
We present the design of the new flat field calibration system, explain the main design decisions and discuss results from commissioning. These include comparisons between dome and dark sky flats, and measurements of the sky subtraction accuracy.
Veloce is an ultra-stable fibre-fed R4 echelle spectrograph for the 3.9 m Anglo-Australian Telescope. The first channel to be commissioned, Veloce ‘Rosso’, utilises multiple low-cost design innovations to obtain Doppler velocities for sun-like and M-dwarf stars at <1 ms -1 precision. The spectrograph has an asymmetric white-pupil format with a 100-mm beam diameter, delivering R>75,000 spectra over a 580-930 nm range for the Rosso channel. Simultaneous calibration is provided by a single-mode pulsed laser frequency comb in tandem with a traditional arc lamp. A bundle of 19 object fibres ensures full sampling of stellar targets from the AAT site. Veloce is housed in dual environmental enclosures that maintain positive air pressure at a stability of ±0.3 mbar, with a thermal stability of ±0.01 K on the optical bench. We present a technical overview and early performance data from Australia's next major spectroscopic machine.
VELOCE is an IFU fibre feed and spectrograph for the AAT that is replacing CYCLOPS2. It is being constructed by the AAO and ANU. In this paper we discuss the design and engineering of the IFU/fibre feed components of the cable. We discuss the mode scrambling gain obtained with octagonal core fibres and how these octagonal core fibres should be spliced to regular circular core fibres to ensure maximum throughput for the cable using specialised splicing techniques. In addition we also describe a new approach to manufacturing a precision 1D/2D array of optical fibres for some applications in IFU manufacture and slit manufacture using 3D printed fused silica substrates, allowing for a cheap substitute to expensive lithographic etching in silicon at the expense of positional accuracy. We also discuss the Menlo Systems laser comb which employs endlessly-singlemode fibre to eliminate modal noise associated with multimode fibre transmission to provide the VELOCE spectrograph with a stable and repeatable source of wavelength calibration lines.
The High Efficiency and Resolution Multi Element Spectrograph, HERMES, is a facility-class optical spectrograph for the Anglo-Australian Telescope (AAT). It is designed primarily for Galactic Archaeology, the first major attempt to create a detailed understanding of galaxy formation and evolution by studying the history of our own galaxy, the Milky Way. The goal of the GALAH survey is to reconstruct the mass assembly history of the Milky Way through a detailed chemical abundance study of one million stars. The spectrograph is based at the AAT and is fed by the existing 2dF robotic fiber positioning system. The spectrograph uses volume phase holographic gratings to achieve a spectral resolving power of 28,000 in standard mode and also provides a high-resolution mode ranging between 40,000 and 50,000 using a slit mask. The GALAH survey requires an SNR greater than 100 for a star brightness of V=14 in an exposure time of one hour. The total spectral coverage of the four channels is about 100 nm between 370 and 1000 nm for up to 392 simultaneous targets within the 2-degree field of view. HERMES has been commissioned over three runs, during bright time in October, November, and December 2013, in parallel with the beginning of the GALAH pilot survey, which started in November 2013. We present the first-light results from the commissioning run and the beginning of the GALAH survey, including performance results such as throughput and resolution, as well as instrument reliability.
The High Efficiency and Resolution Multi Element Spectrograph, HERMES is an facility-class optical spectrograph for
the AAT. It is designed primarily for Galactic Archeology [21], the first major attempt to create a detailed
understanding of galaxy formation and evolution by studying the history of our own galaxy, the Milky Way. The goal of
the GALAH survey is to reconstruct the mass assembly history of the of the Milky Way, through a detailed spatially
tagged abundance study of one million stars. The spectrograph is based at the Anglo Australian Telescope (AAT) and is
fed by the existing 2dF robotic fiber positioning system. The spectrograph uses VPH-gratings to achieve a spectral
resolving power of 28,000 in standard mode and also provides a high-resolution mode ranging between 40,000 to 50,000
using a slit mask. The GALAH survey requires a SNR greater than 100 for a star brightness of V=14. The total spectral
coverage of the four channels is about 100nm between 370 and 1000nm for up to 392 simultaneous targets within the 2
degree field of view. Hermes has been commissioned over 3 runs, during bright time in October, November and
December 2013, in parallel with the beginning of the GALAH Pilot survey starting in November 2013. In this paper we
present the first-light results from the commissioning run and the beginning of the GALAH Survey, including
performance results such as throughput and resolution, as well as instrument reliability. We compare the abundance
calculations from the pilot survey to those in the literature.
The High Efficiency and Resolution Multi Element Spectrograph, HERMES is an optical spectrograph designed
primarily for the GALAH, Galactic Archeology Survey, the first major attempt to create a detailed understanding of
galaxy formation and evolution by studying the history of our own galaxy, the Milky Way1. The goal of the GALAH
survey is to reconstruct the mass assembly history of the of the Milky way, through a detailed spatially tagged
abundance study of one million stars in the Milky Way. The spectrograph will be based at the Anglo Australian
Telescope (AAT) and be fed with the existing 2dF robotic fibre positioning system. The spectrograph uses VPH-gratings
to achieve a spectral resolving power of 28,000 in standard mode and also provides a high resolution mode ranging
between 40,000 to 50,000 using a slit mask. The GALAH survey requires a SNR greater than 100 aiming for a star
brightness of V=14. The total spectral coverage of the four channels is about 100nm between 370 and 1000nm for up to
392 simultaneous targets within the 2 degree field of view.
Current efforts are focused on manufacturing and integration. The delivery date of spectrograph at the telescope is
scheduled for 2013. A performance prediction is presented and a complete overview of the status of the HERMES
spectrograph is given. This paper details the following specific topics:
The approach to AIT, the manufacturing and integration of the large mechanical frame, the opto-mechanical slit
assembly, collimator optics and cameras, VPH gratings, cryostats, fibre cable assembly, instrument control hardware and
software, data reduction.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.