The XMM-Newton observatory has the largest collecting area flown so
far for an X-ray imaging system, resulting in a very high sensitivity
over a broad spectral range. In order to exploit fully these
performances, an accurate calibration of the XMM-Newton
instruments is required. This calibration is being continuously
updated, in order to refine the stable calibration parameters as well
as to account for the detector response changes induced by radiation damage. We report here on the current overall status of the EPIC/MOS cameras calibrations, and in particular on the recent work involving Charge Transfer Inefficiency evolution and recovery.
The High Throughput X-ray Spectroscopy Mission XMM-Newton of the European Space Agency (ESA) was launched on December 10, 1999 by an Ariane V rocket. The satellite observatory uses three grazing incidence telescopes coupled to reflection grating spectrometers and x-ray CCD cameras. Each x-ray telescope consists of 58 Wolter I mirrors which are nested in a coaxial and cofocal configuration. The XMM-Newton Science Operation Center has completed a coherent program for the in- orbit calibration and performance verification of the x-ray observatory. This paper presents first measurement results of the x-ray telescopes image quality and effective area obtained during this campaign.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.